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I. Introduction

This document presents the complete equations for the Unified Flexible

Spacecraft Simulation (UFSS) Program developed by TRW Systems for the NASA/MSFC

under Contract NAS 8-26131. This general purpose simulation program is

based on an algorithm which utilizes the digital computer to synthesize

the dynamic and kinematic equations for a topological tree configuration of

N interconnected bodies (the interconnected system of bodies forms no

closed loops), the terminal members of which may be flexible. (For illus-

trative purposes, Figure 2.1 depicts such a spacecraft model (N=15) where

the possible flexible bodies are shaded.) Necessary input quantities to the

dynamics subroutine include the mass and inertia properties of each body

and the flexible characteristics of each terminal member in addition to the

specification, for each body, of those bodies to which it connects. This

latter description involves the specification of the number of rotational

degrees of freedom at each interconnection along with the associated position

vectors defining these connections relative to the mass centers of the bodies

involved. These position vectors can be input as time-varying functions

if desired, thus affording the capability of studying the effects of time-

varying hinge locations. Springs and dampers are assumed to act at each

interconnection and structural damping in the flexible terminal members

is included in the form of equivalent viscous damping.

Figure 1.1 presents the major subroutines of the UFSS program. The

Dynamics Subroutine is the subject of Sections III, IV and V of this report.

The Disturbance Subroutine is documented in Section VI; the Orbit Subroutine

is documented in Section VII; the Control Interface Subroutine is documented

in Section VIII.

[Note that although no control laws are implemented at this time, this inter-

face routine provides for the future addition of any specific or generalized

control subroutines.]

Finally, the Modal Subroutine is documeted in Section IX with a list of

symbols given in Section X. Appendix A details the derivation of the dynamic

equations, while Appendix B contains the derivation of the flexible distur-

bances.

1



I Structural Dynamics I
I Program

Control
Subroutine

Figure 1.1 Schematic of the Major Subroutines of the UFSSP

1.1

.1

I
I

I
I



II. Description of the System Model and Notation

Consider the case of a multibodied flexible spacecraft modeled as a system

of N bodies interconnected in a topological tree configuration such that

only the terminal bodies may be flexible. Figure 2.1 below exhibits such a

configuration where N=15 and the possible flexible bodies are shaded.

Figure 2.1 Spacecraft Model in a Topological Tree Configuration.

This figure also exemplifies the method by which the user numerically

identifies the individual bodies.

2



2.1 Topological Tree Model Specification

In particular, whenever a physical system is modeled as in Figure 2.1,

it is possible to identify a specific body whose attitude relative to some

external reference coordinate set is of prime interest; this is usually

that portion of the spacecraft housing the payload and this particular body

will be denoted as Body 1 of the system. [An example of a possible external

reference coordinate set for this program is a set located on a user defined

Kepler orbit such as specified in Section VII.]

The remaining bodies are labeled in numerical sequence in a fashion

which denotes the minimum number of interconnections that must be crossed

in traversinga path from the specific body back to Body 1. The number of

connecting points crossed is defined to be the level of the body. (Thus,

there is a unique body having level zero, and this is Body 1.)

In general, if Body m is connected to Body n and the level of Body m

is greater than that of Body n, then-Body m is defined to be a branch of

Body n and Body n is defined to be the limb of Body m. A sub-branch of

Body n is any member of higher level than that of Body n for which the latter

forms a link in the chain connecting the member to Body 1.

The rule for numbering the individual bodies in the topological tree

configuration is simply that:

m 2 n implies that the level of Body m 2 the level of Body n

Figure 2.1 clearly illustrates this labeling scheme. There are three

level one bodies (2, 3, 4), four level two bodies (5, 6, 7, 8), three

level three bodies (9, 10, 11) and four level four bodies (12, 13, 14, 15).

From Figure 2.1, the limb-branch relationships given in Table 2.1

are determined. These relationships, along with the specification of each

body as flexible or rigid plus the rigid-body and flexible degrees of freedom

for each body, constitute input to the computer program.

3



Configurational Input Relationships for Figure 2.1

Type of
Branch Limb Body

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

1

1

2

3

4

4

5

6

8

10

10

11

11

R

R

R

R

R

F

R

R

R

F

R

F

F

F

F

Rigid-Body
Degrees of Freedom (p )

6

2

1

3

3

0

1

2

1

3

3

1

2

1

3

Flexible
Degrees of Freedom (nj)

-

0

0

0

0

0

3

0

0

0

5

0

4

0

4

4

It should be noted in Table 2.1 that Body 13 is entered as a flexible body

with zero flexible degrees of freedom. This case is allowed to cover the

option of. cnstraining all flexible degrees of freedom for a given flexible

body for preliminary analyses.

2.2 Definition of Coordinate Systems and Basic Vector Quantities

Figure 2.2 depicts a multibodied flexible spacecraft system modeled

as a topological tree configuration of bodies traveling through space in the

vicinity of an attracting body. In most cases, motion of the configuration

is expressed with respect to an orbital reference axis frame although this

is not mandatory and the reference axis frame may be arbitrarily specified

if so desired.

4

Body

Table 2.1.



Several right-handed, orthogonal coordinate frames are used extensively

in the following development. The pertinent axis sets are described below,

the inertial reference frame being given with respect to the earth as the

orbited body.

e e
x ; e
c -E

r r
x ; e (a=1,2,3) --at -a

Rr = Rr e

=R = R er

Coordinates and unit vectors of the inertially

fixed coordinate system with origin 0
e

at

the earth's center. ee and ee lie in the
e

equatorial plane with e2 normal to this

plane and pointing northward; ee is directed

along the autumnal equinox.

Coordinates and unit vectors of the moving

reference coordinate frame. If the reference

frame is an orbital one(Section VIII), then

its origin 0 lies on the user defined
r

r r
Kepler orbit with er and e3 lying in the

orbit plane and e2 normal to it. e3 points

toward the earth's center and er forms an

acute angle with the orbital tangential velocity

vector.

- Position vector of the reference coordinate

center 0 with respect to the earth's center
r

0
e

Position vector of Body 1 mass center 01

with respect to the reference coordinate center

0
r

[Note: repeated subscripts here and throughout this document denote summation

over the range of the repeated subscript; i.e., RB R e + R e
+- - 1 -R2-2

3 e3

5
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Figure 2.2. Details of Inertial and Orbital Reference Axis Frames
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In what follows, vector quantities will be expressed in tensor (or

indical notation) form simply by denoting the components. Thus

RrR _ Rr

In addition, an

as follows:

ct

"outer product" matrix is formed from a given vector

r -i 41
0O _ hj0 -W1

j
3

2j2 j031 0

so that, transforming from vector to index notation,

f x -g = ffcB g ' .

Figure 2.3 presents a

and its limb (Body i). The

can now be defined:

k k
x ; e (a=1,2,3) --

xko ; ek (8=1,2,3)+

schematic of a terminal flexible body (Body j)

following coordinate frames and vector quantities

Coordinates and unit vectors of an axis frame

fixed to Body k. If Body k is rigid, then the

origin of this frame O
k

is located at its

mass center. If Body k is a terminal flexible

member, then O
k

is located at the connecting

point of Body k with its limb.

Coordinates and unit vectors of an axis frame with

fixed orientation relative to the limb of Body k.

The origin of this frame is coincident with O
k
.

Normally this frame is used to define some nominal

orientation of Body k relative to its limb with the

attitude variables of Body k defining the orientation
k ktof the x relative to the x
ac 

7



BODY j (DEFORMED)

n.

Ui(F 3j,t) = i
-I ,=1

-BODY j 

K GIMBALLED HINGE

ORIGIN OF REFERENCE FRAME

Figure 2.3.

(UNDEFORMED)

Two-Body Schematic
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-r r r
W = m e - Angular velocity vector of the reference frame.

a -a

-k k k k
W = k e ' Angular velocity vector of the x framea -a a

k k r
=R Rk er Position vector of O

k
with respect to 0

iJ = Zij a' Position vector from the Body i mass center to
a -a

its connection with Body j.

rJ = rj ej - For Body j a flexible body, rs is the position
a -a

vector from the connecting point to an arbitrary

mass point in Body j when the body is undeformed.

The various coordinate

matrices as follows:

x J
a

frames are related through direction cosine

= AJJo Jo' 
ao xs

xj = Aji xi a a8 a

xJ = Ajr r
a Al 8

where

AJlo = ej . elOas -a -a

Aji = e* e
a8 -a -8

Ajr = ej er

All adjacent bodies are assumed to be connected through a gimbal

hinge (see Section IV.1) with gimbal angular rotations expressed by the

coordinates

9



6j (a=1,2,3) - the gimbal rotations defining the orientation of the

xi frame with respect to the x °j frame.

In addition, once bodies have been combined, the following column

matrix is used in the sequel:

for Body j a branch of Body i, this column matrix has a
b

rotational component for every flexible and rotational degree

of freedom of Body i's branches and sub-branches numbered k j

When a terminal body, say Body j, is deformed, the position vector

pj = pa ej of an arbitrary mass point in the body is given by (see Figure 2.3)

pJ (ri, t) = rJ + uj (rJ, t)

where ri is the position vector of the mass point when Body j is undeformed.

In this program, uJ is assumed to be representable as a finite sum of

vector field functions (orthogonal functions) with time-varying coefficients:

3

J (r, t) = u
j

e j

nj

= Z q4 (t) * (rJ)
a=l

Q= 1
where

ij (r ) = the fth orthogonal function describing spatial variation of uJ 

qj = generalized coordinate describing the time variation of j(t) = generalized coordinate describing the ime variation of u.

= number of terms in the series expansion.
j

10



III. Synthesis of the Dynamic Equations

Attention will now be focused upon the detailed description of the

algorithm utilized by the computer to generate the system dynamic and kine-

matic equations. The state vector is taken to consist of the scalar elements

Air 1 R
1

l j j , q ,
a a a a Y ' ' k ' k

where

a, B = 1,2,3

j= ,...,N

k= O,1,...,nj

y = 0,1,... .,p

with nj being the number of flexible degrees of freedom of Body j and

pj being the number of rigid-body degrees of freedom of Body j with respect

to its limb (n. and pj may be zero).

The inductive algorithm used to synthesize the dynamic equations

for a spacecraft modeled as in Figure 2.1 is based upon an operation which,

given the dynamic equations for two separate systems, generates the dynamic

equations when the two systems are coupled together. Specifically, suppose

the dynamic equations are known for both Systems A and B in Figure 3.1,

and that System C is a combination of these two through an r (O < r 5 3)

degree of rotational freedom interconnection. (Note that only the shaded

bodies in Systems A, B and C may be flexible.)

11



A

Figure 3.1. Combining Two Systems to Form a Third

The algorithm providing the dynamic equations for the combined

System C is termed the Combining Unit and can be represented schematically

by a two-input - one-output device as pictured in Figure 3.2.

System A
Dynamic Equations

System B
Dynamic Equations

Figure 3.2.

System C
Dynamic Equations

Schematic of the Combining Unit

The actual combining operation is accomplished by eliminating from the

dynamical equations the forces and torques of constraint between the Systems A

and B. When applied to an actual spacecraft modeled as in Figure 2.1,

this Combining Unit is utilized repetitively to synthesize the dynamic

equations through appropriate interpretations of the Systems A, B and C.

12
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Thus, there are two elementary components in the synthesizing

algorithm: first, the Combining Unit and second, the Sequencing Algorithm

which specifies the appropriate Systems A, B and C at each application

of the Combining Unit.

Let us first consider the latter component.

3.1 The Sequencing Algorithm

In order to specify the sequence of combining operations, one need

merely list for each branch its corresponding limb and the number of

interconnecting rotational degrees of freedom. Once this information is

supplied, a computer algorithm determines the sequence of combining operations

necessary to synthesize the system equations.

For example, consider the configuration shown in Figure 2.1. From

the input information supplied in Table 2.1, the Sequencing Algorithm determines

the step by step procedure outlined in Table 3.1 below, defining the Systems

A, B and C at every application of the Combining Unit.

Assuming that the lowest level body in System A has a level greater

than that of the lowest level body in System B, the development initiates

at the highest numbered body (15) and considers the interconnection with

its limb (11).

see Section 111.2

13



Thus, upon the first pass through the Combining Unit, the generated

equations of motion (C) apply to the two-body system 15-11, where the

constraint forces and torques between these two bodies have been eliminated

and the torques along degree of freedom axes are specified by other routines

of the simulation, such as the control system subroutine. In a similar way,

the second pass combines body 14 with the system 15-11 to form the three

body result 15-14-11. This technique is now successively repeated until,

after the 14th pass, the complete equations of motion (i.e., the second

derivative of the state vector components) reside in C and are ready for

the computer's integration package. This sequence of operations is retained

by the computer and applied, at each integration step, to form the dynamic

equations.

Table 3.1. Synthesis of Dynamic Equations
for System of Figure 2.1

14

Use No. System A System B System C' Input Parameters
_____________________ Required for Body

1 15 11 15-11 15,11
2' 14 C 15-14-11 14
3 C 8 15-14-11-8 8
4 C 4 15-14-11-8-4 4
5 7 C 15-14-11-8-7-4 7
6 C 1 15-14-11-8-7-4-1 1

Store C in C1
7 13 10 13-10 13,10
8 12 C 13-12-10 12
9 C 6 13-12-10-6 6

10 C 3 13-12-10-6-3 3
11 C C1 13-12-10-6-3-15- - - -

14-11-8-7-4-1
Store C in C1

12 9 5 9-5 9,5
13 C 2 9-5-2 2
14 C C1 15 through 1

C now houses the system dynamic equations
_ _ _ _ _ _ _ _ I ~I I 



Determination of the new translational and rotational positions is

a considerably simpler task as it is merely necessary to integrate directly

the rate variables already present in the state vector. This procedure

applies to all but the body 1 rotations for which the attitude direction

cosines are desired. These can be obtained by integrating the conventional

direction cosine equations as will be demonstrated later. [see (4-52)]

When defining the Combining Unit in the following section, it is

convenient to identify a system by specifying the lowest leveled body and

its lowest numbered branch. As shown in Figure 3.3, let Body j of Level

(N+1) be the lowest leveled body of System A [here, N is arbitrary and

does not refer to the total number of bodies in the configuration] and let

Body s of Level (N+2) be the lowest numbered branch of Body j. Let Body i

of Level N be the lowest leveled body of System B and Body Z of Level (N+l)

be the lowest numbered branch of Body i. [Note that because the sequencing

algorithm commences with the highest numbered bodies, it is true that j<Q.]

Following the combining process, Body j becomes the lowest numbered branch

of Body i and the entire combined system is designated System C. Thus,

system identification is as follows:

System A - System js

System B - System it

System C - System ij

3.2 The Combining Unit

As exemplified in Table 3.1, the Combining Unit is utilized repetitively

to synthesize the dynamic equations for a combined System C given the dynamic

equations for its components, Systems A and B. In this program, the dynamic

equations for the rigid bodies of the system are the standard Euler equations

while the dynamic equations for the terminal flexible bodies are obtained

via a Lagrangian approach. Because of dissimilarities in the forms of

the equations for the flexible and rigid bodies, two distinct combining

15



System B

(System it)

Level (N+1)

System A

(System js)

I <t

Level (N+1)

System C

(System ii)
Level N

Figure 3.3. The Combining Process for Two Systems of Bodies
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algorithms are utilized in the Combining Unit. Choice of the proper combining

algorithm depends on whether or not System A is a single flexible body in

a given combining operation (see Figure 3.4 where the Combining Unit is
;V

represented by the blocks contained within the dashed lines).

The following section contains details of the Rigid Combining Algorithm

used when System A is not a single flexible body; Section V defines the

Flexible Combining Algorithm used when System A is a single flexible body.

Derivations of the governing equations are contained in Appendix C.

IV. Rigid Combining Algorithm Specification

Assume that System A in a given combining operation (Use No. in

Table 3.1) is not a single flexible body. In this case, the Rigid Combining

Algorithm is utilized to synthesize the equations for System C given those

for Systems A and B. Prior to the first pass through this algorithm, it

is necessary to compute certain auxiliary variables that are not elements

of the dynamic state vector, but that can be algebraically determined

from this vector. [In addition to the auxiliary variables specified in the

following section, the gimbal torques and certain quantities associated

with the flexible bodies should be computed at the same time. These quantities

are specified in Sections 4.4, 5.1 and 5.3.]

4.1 The Auxiliary Variables

Specifically, it is desirable to compute and store for all bodies j

the scalar components of Air R , and wj

Using the notation of Section 2.2 and supposing Body i to be the

limb of Body j, it follows that

Aji = Aj ° Aj~i-Ai = AiJO AiO' (4.1)
a1 cly Y7

where AOi O is the input transformation from the Body i axes to the

nominal Body j axes. Let us first consider the transformation matrix Aj jo

Aji ° can be obtained by three successive Euler rotations j (a=1,2,3), satis-

fying the constraints of a gimballed hinge, such that

this algorithm originally developed in Reference 3.

17
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no System A yes

is a Single Flexible Body

Rigid Combining Algorithm Flexible Combining Algorithm

System C
Equations

Figure 3.4. Elements of the Combining Unit
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AJJo - Gj 3
cr cr¥

1

0

0

cos j
1

0 -sin O8

J
0 -sin 2

0 1 0

0 cos 6

Gj 3
ay

cos eD sin 6i
3 3

-sin Oi cos DJ
3

0

0 (4-5)

L O 1

Rotational constraints in Equations (4-3) to (4-5) are handled by setting

the pertinent &J identically equal to zero, with the condition that first
a· i

e is constrained, then 0 and finally, &3 if necessary.
3 2 1

In a similar.. fashion,

Ajoi = Gio3
cr8 ¥cy

Gjo 2 Gjol
¥S 68

19

where

Gj 2 GJ1
Y6 6S (4-2)

0

sin B~
1

cos 8
1

(4-3)

cos j2
2

sin 22

(4-4)

(4-6)



where the Gj ° are identical to the Gi defined by Equations (4-3)
6y Sy

to (4-5) with 6j replaced by ejo (a=l,2,3). The 8Jo are input parameters.
ac a oa

In most instances the j °a will be constants; only when generalized relative

displacement between Body j and Body i is desired will it be necessary to

input the 8jo as time-dependent quantities and in these instances the eJO (t)

and 'ij (t) must be consistently prescribed.

Angular velocities are determined through the relation

wj = AJJO wJO + Gj+ 6i
a a8 8 aa 8

(cos 8 j

(sin Oj
3

K

cos 80) (sin 83) 0

cos 2e) (cos ej )
2 3

(sin 8 )

0

0 1

(4-7)

(4-8)

G = G j with those columns removed which

freedom; i.e., if ej = 0, then
a

G is deleted in forming GO+
6y 6y

while eo

of freedom.

imply no degree of

the ath column of

(4-8a)

degree

given by

is equal to 8 with those rows deleted which imply no

Thus, if eJ has two degrees of freedom, then m
j

is
a8 i

:W = AJJo jo +a a8 8

(cos 8i cos 86)

j i
4sin 8 cos 8 )

(sin e8)
2

(4-7) is not coded. The proper expression is (4-10).

20

where

and

(sin 0e)

(cos 08)
3

(0)

2i1

6ij
2



In case the ej ° (a=1,2,3) are constant, Equation (4-7) becomesa

= A I Wi + Gi+ oJ
a aa 8 a$ a

In the general

Equation (4-7)

case where the ejo are time-dependent input functions,

becomes

=J Ac' WX + G a aa a aa a + Aj j o Gojo eJo

where GJO is defined

is no need to define a

for any component Oj °
a

similarly to Gj with Gjo replacing

Gjo° since it is sufficient to set

which is constant.)

ej . (There

aJo = 0
a

oo
It is evident that A can be computed directly from the state

vector and the input parameters eJO (a=1,2,3). Adopting a procedure

whereby the auxiliary variables associated with bodies of lower level

are computed first, it can be assumed that Ai is already known. A

then follows simply from the relation

Ajr = Aj i Air
aa ay YB (4-11)

To complete the description of the auxiliary variables,

Ale = Ajr Are
aa ay yB

Rj = Ri + Air(T) gij - Ajr(T)
=a a ia ai

- = + Air(T) ij -_ AJr(T)

+ JAir(T)
a

aa

(4-11.1)

(4-12)
zji
8

iji
a

-i - or Air(T) Qij

yB - WrB AaBY t

way - ABY

(4-13)

21
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where the super-dot above a variable denotes time differentiation in the

designated axis frame. In the above fashion, the auxiliary dynamic variables

for all bodies can be obtained. It is merely necessary to consider them

in the proper numerical sequence beginning with Body 1.

4.2 The Rigid Combining Algorithm

Suppose that System A has Body j as its member of lowest level,

System B has Body i as its member of lowest level (i<j) and that A is

to be connected to B to yield C as in Figure 3.3. Referring to this figure,

it is also assumed that Body Z is the lowest numbered branch of Body i in

System B, s is the lowest numbered branch of Body j, and j< .

The dynamic equations for System A are as follows:

BAll
BkZ

BA21
at

BA31
at

System A

A12 A13
B B kk8 k8 i

BA22 BA23
aB aB

BA32 BA33
aB aB

JQs5
£

i-jR
B

A22 A23 A32 A33
B , B , B and B are 3

B running from 1 to 3; CA2
All a

has M components, then Bkl is M
A21 A31 kI

K 3, B and B are 3 x M while

System B has a similar description and

x 3

md

x M,

CAl

cA2
a

cA3

matrices with the indices

CA 3 are 3 x 1 matrices;
a A12 a A13

BkB andBkB

Ck is M x 1.

interpretation.

System B

BB12 BB13
mB mB

BB22 BB23
aB aB

BB32 BB33
aS aS

Here,

a and

if Mj

are M x

(4-14)

eiQ
nn1~

BBll
mn

BB2 1
an

BB3 1
an

CBl1
m

cB2
a

cB3
a

(4-15)
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Finally, the output of the Rigid Combining Algorithm has a similar appearance.

BC12
B

System C

BC1l
PB

BC22 BC23B B
ad aa

C32 C33B B
a0 ao

0I

qij ei
q

0-

with the column matrix 0j including only
Y

at the interconnection of Bodies i and j.

the degree-of-freedom components

To complete the description of the Rigid Combining Algorithm, it

is now necessary only to explicitly specify the elements of the matrices

BC and CC and to show how this inductive process can be initiated at

the bodies of highest level by direct use of the computer input data.

BCll
Pq

BBll
mn

0 0

All 10 B P
kP2. ky

0 P
cU,

p3
ay

(4-18)

23

ij
01

q

BCll
Pq

BC2 1
aq

BC31
aq

where

cclC1
P

cC2

CC3

(4-16)

ii
n

jis

Y 

(4-17)



BB12
mB

4

Pk
p5

B13
ma

A13
Bk$

6
_a

C 1 2 =
B

Pa

C 13 -
BOB

_ I I
B
C 2 1 = BB2 I p7 p8

aq aan t ayI ~

C22 9BC22 = _ p9 p10 + pll Aji + BB2 2

C23 = BB 2 3 _ p9
aB mB mB

C31 = B31 ji(T) A3 1 l2 Gj+
aq Ban Aa BQ p Gy|

BC3 2 BB32 + Aji(T) BA3 3 p1 0 + p1 2 Aji
a$ aB ay y 66 ay yA

BC 3 3 = B
B
3 3 Aji(T) BA3 3

aa a8 ay Y$

24

(4-19)

(4-20)

(4-21)

(4-22)

(4-23)

(4-24)

(4-25)

(4-26)



CC 2

a

cCl
C

1

p

= cB2 + p9 16
s Cs+ P8

C3 = CB3C C
Ct a

The P to P1
ka aS

CBl

13

P1 4

11 17
-P PSB 

- P1 2 P1 7 + Aji(T) lA 3

are defined as follows:8 

are defined as follows:

+ AJi(T) CA2 + p18 CA3
+ a aC 8

- BA3 3 ply6
Sy Y

Pk B k2k ka
+ BA13 P1 9 Gj+

ky ya aS

= Ajr(T) Qji
56 6

p2 = BA21

~ s~
- BSA3
aS SRa

where the superscript

quantity if ej = 0 ·
a

0 denotes removal of the cth row of the associated

p3 = p20 G
script O has the same meaning a e and

where the superscript 0 has the same. meaning as above and

20 A22P = B
act aS

4 = BA12
PkB ka

pS = Ip20
1r

A23 19 -ji A32
ay y ay y

+ BA13 p19 Aji
ky ya aB

Aji + p21
Ya ay

BA3 3 Pl9'

+ BA13 plO
ka OcB

25

(4-27)

(4-28)

where

(4-29)

p19

ay

(4-30)

(4-31)

(4-32)

(4-33)

(4-34)

(4-35)

(.4-36)



21 = A2 3

a ac8
-ji A 3 3

- ay 

p6 = Ip21 i

7 p8 BA31 + Aji(T) BA2 1

PaS = p11 GJ
a8 ay Yo

p9 = _ p1 8 BA3 3

acy acS 
- Aji(T) BA2 3

AS Y

p1 0 _ Air(T) -ij
aA ay yB

pll p1 8 BA32 + Aji(T) BA2 2 _ p9 p1 9

aB a ¥8 ayy y ay y¥

12 = Aji(T) BA32 + BA33 19tP ¥ ¥B +B P

1 3 = Al B A12 + BA 3 p19 I p17 A13 16
k kc + kO ca a k$ P

(4-41)

(4-42)

(4-43)

(4-44)

(4-45)

14 = _ p20 17 21 16 cA2 ji + ji (4-46)
=a I p P8O Pa + 4-a~~~~~~~~~~C +S T ( 4 - 4 6)u B
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(4-37)

(4-38)

(4-39)

(4-40)



where the superscript o is again applied as before, meaning that only

those components of Tj i along degree-of-freedom axes are pertinent

= Air(T) ij + 2 Xi yi +
Ma 2 a Wy 

- Ajr(T) t Qji 2 j jiy 
8y Y

-i -i ii
By WYs 9iJ

-j w- j it i
Way y6 & ~

+ r + r r - 2 2
I WaB W ay WY B Ot c a

17 _ ji i 0 +P w A w + 6j+ ej
a aa ay y a8 8

+ plOO

(-ej cos 0 sin Oj - 6j sin O
2 3 2 3 3

(0J sin & sin ej coso8
2 2 3 3 3

cos 2) (O3 cos 03)

cos J) (-6j sin 6)
2 3

(Vj cos 62)2 2 0

superscript + again implying removal of the ath column if

100 = jjo J + [ Aji i AJoi(T) _ ji Ajjo] GJo
ay y¥ aB 86 I

iajo
a

(4-50)

+ AiJO GJo J o
aa ay Y

p18 = lij Aji(T)
aB kay y$

- Aji(T) -ji
ay yB

This completes the definition of the Rigid Combining Algorithm.

The kinematic equations for Body i (ik2), that is, a determination

at time t of its attitude rates, is already known since terms such as 8O

are already elements of the dynamic state vector. For Body 1, a direction

cosine approach is desired and the kinematic equations are as follows:
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p16

where

(4-47)

(4-48)

the

and

0

0

0

ej a

(4-49)

0 ,

(4-51)



lr ~ 1 lr ilr ~rA = -w A + A a (4-52)
aB = -a¥ yB at y¥

The above relations were coded in the initial UFSS Program. However,
lr

a much more efficient calculation of A is realized by utilizing an

"Euler parameter" technique as follows.

Utilizing (4-52), it follows that

*el el ~1
adAay WyUro

The initial orientation for A
e l

is obtained from

Ael (t)= Aery(to) Ays(to)o ay Yao 0

The matrix Ae can be written in terms of A (t), a constant, and a

matrix CB , a function of time as follows

el el
Ael (t) = Ae l (t) Cy(t) , (4-52-a)

el
so that Cy6(t) also satisfies the same differential equation as AB : i.e.,

CaB = CaBl'as ay y5

Instead of solving the above matrix differential equation, C

can be expressed in terms of the four Euler parameters consisting of a scaler

X and a vector Ka resulting in four scalar differential equations to be

integrated.

To introduce the Euler parameters, note that any orientation of

a body may be achieved by a counterclockwise rotation about an appropriate

unit vector ea through an angle O . Accordingly, Ca has the repre-

sentation

CaB = 8 B+ sin e ae + (1 - cos e) e e y
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The Euler parameters are defined in terms of e and e by

X = cos (e/2)

a= sin (0/2) e 

Then

Ca = sa + 2 X Ke8 + 2 K K

The differential equation for C B leads to corresponding differential

equations for X and K , namely

X = - 1/2 w(T) K

2 a a
1= 1/2 a - WO I

By definition, X + K(T) K is equal to one and indeed this function is

an integral of (4-52-c). This fact is used to provide a check on the com-

putation through calculation of

A = |I1 - X2+ KT) K

As seen from (4-52-a), the initial value of Cap is the identity matrix.

Thus, from (4-52-b), initial conditions for (4-52-c) are

X(to ) = 1 ; Ka (t o ) = 0ac o (4-52-e)

Finally, the equations (4-52-c) and (4-52-e) are solved for X(t) and c (-tY

with (4-52-b) subsequently used to obtain Ca Bt) . From (4-52-a)

Ale(t, = C(T) Ale ) 
A (c(ay t) y 

Thus, since Al e
' B

= Alr Are AlrA r A'r is obtained fromay Ya ao

28a

(4-52-b)

(4-52-c)

(4-52-d)



lrltt =- C(T) t)A(t ) A ( (t)re Al Alr (t ) A" (t ) A Tt
OLO ray ya o ep o

(4-52-f)

It now remains to detail the initialization of the inductive Drocess.

4.3 Initialization of the Rigid Combining Algorithm

When one of the inputs to the Rigid Combining Algorithm is a

rigid body (say Body k is the System A), then the matrices BA and

are initialized as follows:

single

CA

A22 k
B = 

A33 k kr
Ba = m a

aB a

A23 A32B =
a$ aa

(4-53)

(4-54)

(4-54.1)= 0

All the remaining sub-matrices of BA are void. In addition,

CA 1 is void

A2 ~ k k k keC = _ y Iy W6 + T
a ay YS o a

(4-55)

(4-56)

A3 k kr[ 
C = - m A 2

a ay2y 6

+ Fke
a

k +(y r r k]R6 +( Yr + W¥ wB) R6

(4-57)

If Body k is, instead, a single rigid body treated as a limb (System B),

then the above specified sub-matrices of B and C
A

define the sub-

matrices of B and C . In either event, the Rigid Combining Algorithm

can be readily initialized in its inductive procedure of synthesizing the

system dynamic equations. For specification of T k e and Fk e see Section 6.1.
a a 
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4.4 Specification of the Torque Tj i (needed in (4-46))

The relative rotations ej of Body j with respect to its limb,

Body i, are assumed to take place about a gimballed hinge nominally aligned

with the axis frame (x ,x2 , 3 ). The components of the torque TJi

are functions of the reaction torques at these gimbal axes.

Specifically, let T2h , Tjh , Tjh be the gimbal hinge reaction

torques about the xl , , x3 gimbal axes of Body j. These three

gimbal torques may be arranged in a 3 x 1 column matrix such that

h

Tjh - T2h (4-58)

hTj

where the elements of Tj h are not orthogonal components of a resultant

torque vector.

It can readily be shown that the torque components of the total

gimbal reaction torque, transmitted from Body i to Body j, defined in

Body j coordinates are given by

Ti= [G(T)] Th (459)

where

r cos e3 j . sin eO cosB 
sin 03

cos e8
2

[Gj (T] -1 sin 8 cos

cos 3e
2

0 0

cos 8u
2

sin 6j sin Oj

Cos
eJ I (4-60)

2

1
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(It is assumed that the gimbal rotations are such that 0 < 82 < w/2

so that cos e2 i 0.)

The gimbal torques about the gimbal axes of Body j are

Tjh = Tj s + Tj d + Tjm (4-61)
ar a a a

where

Tja K i - Kj2 j e2 - Kj3 O3

are the spring restraint torques,

Tid -- cj2 6j2 Cj3 j3

are the damping torques and

Tjm is the array containing the motor torques about the

gimbal axes of Body j in case Body ; is a controlled

body.

In the above relations,

kjn 0 0
1

Kin O kj 0ao 2

0 0 kin
3

where kn ki2 k3 are the spring constants associated with the x 

x2g , x3 gimbal axes of Body j in units of FL/(rad) ;

30



jn
1C 0 i 0

Cjn 0 j0
c2

0 jn
O Cc

3

jin jn in g
where c

1
, c3 are the damping constants associated with the x 

x2 , x3 gimbal axes of Body j in units of FL/(rad/T) In addition,

the following notational convenience is utilized:

(eJ)n

a4 n 2)

(e)n
3

The body j control motor torques Tjm are computed in the control

routines.

V. Flexible Combining Algorithm Specification

Consider now the case where System A in a given combining operation

is a single flexible body. In this case, the Flexible Combining Algorithm

is utilized to synthesize the dynamic equations for System C given those

for Systems A and B as shown in Figure 5.1. Prior to the first pass through

this algorithm, the following quantities are computed.

5.1 Auxiliary Flexible Quantities

The following quantities are computed for each flexible body

at the time the auxiliary variables are calculated:

Hka = q Zkka (5-1)

2 = q2j Zk (5-2)

HJ3 = qi i (.5-3)
a k km
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System B

(System it)

Level (N+1)

Level (N+1)

System A

System C

(System ij)

j <i

Level

Level (N+1)

Level N

Figure 5.1. Use of the Flexible Combining Algorithm
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1H4 = 4i o1 (5-4)

5k = q EEJ 8 (5-5)

Hj6 = qj z = Hj (5-6)
ka 9 Lka Hka

HJ-7 = * z (5-7)
a k Z kia

HS = Hi l + H
j
ll(T) (5-8)

a8 aaB aB

ad q- ql E

j

= *i H (5-)H
1
9 = = 1qJ EJ1 (5-9)
aa k I Ekza k H $

~aa ~ q k qQ~ I4 E~a$ qk ka$~ (5-10)

Hjil = qJ NJ (5-11)

HJ12 j jNaN (5-12)

In all the above quantities,

= 1,2,3

k, = 1,2,...,n. .

The arrays Zk g a and Ni~( are obtained from the Mass Properties
kka ' k ' ga6

Subroutine and will be defined in Section IX.

5.2 The Flexible Combining Algorithm

The Flexible Combining Algorithm is used only when System A in a

given combining operation is a single flexible body, call it Body j. Once

again, assume that System B has Body i as its member of lowest level (i<j)

and that System A is to be connected to System B to yield System C as in

Figure 5.1. Referring to this figure, it is also assumed that Body g is the

lowest numbered branch of Body i in System B and that J<Z .
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The dynamic equations for System B will be specified first since

they are identical to the System B equations for the Rigid Combining Algorithm.

Once again,

indices a

matrices; if

r x r, B
B 1 2

mB
is r x 1.

BB2 2
aa
and B
Iii
n
and

BBl l

mn

System B

BB12 BBm
ma mB

B21 BB22
an (a

LBB31
an

BB23
aS

runnir

has r
BB13
mB

B23
BaB

BB32 BB33
~B oB a$ a j

B32
B and

ng from 1 to

components

are r x 3,

LRq a>.

B 

3;

(n=l,

BB2 1
an

cBl
m

CB2
a

cB3
a

are 3 x 3 matrices with the

CB 2 and CB 3 are 3 x 1
a a B1L

2,...,r), then B is
mn

and B
B
3 1 are 3 x r while C

B
1

an m

Specification of the System A equations

be noted that since System A is a single body,

occurs in the synthesizing algorithm only as a

and never as the result of a combining operatj

System A

All
BkZ

BA12 BA13 BA14
ky kB kB

A21 0 A22 0 A23 0 A24 0
B BA B 3 B6Q ty 6' 6S

BA31 BA32 BA33 BA34
acry aB aB

s will now be given. It should

, the following form of System A

a matrix loading operation

ion.

CAl
k

.i

RA3

k,Q - 1,2,..,nj

6,Y = O1,,...,pj

a,B = 1,2,3

34

(5-13)

Here,

(5-14)



Thus, BAll is an nj

are n x 3 ; C is

pj x pj ;
-J i A31
pix l ; Ba3 is 3 x

are 3 x 3 ; CA3 is
a

x n. matrix; B.k is
J A21° Y

n* x 1 ; BAo is p
A230 6 A24oJ
B and B

B
A 3 2

is

3 x 1.

(Note here that the sub-matrices occurring in the equation for Oj appear
Y

with a superscript ° denoting removal of the %th row of the sub-matrices

if EX = 0 ; hence, 6 and y need not run fully from 1 to 3 as must a

and B . However, the full sub-matrices must be loaded as they appear

in the System C equations except for Equations 5.17-5.20)

Finally, the output of the Flexible Combining Algorithm has a form

identical to the output of the Rigid Combining Algorithm.

BabC

ab

System C

BC12 BC1
aB aS

BC 21 BC22 BC23
ab aS aS

BC31
ab

C32 BC33
aB aS

.3ij
b

*i

... ''

C1
C
a

cC2

CC 3
a

(5-15)

where

a, S = 1,2,3

a, b = 1,2,...

Aij
b

niQe n

,(r + n. + pj)
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BA14
kSnj x pij ;

x ni ;

are pj

3 x pj ;

BA13
Bk

x 3

BA33
CIO

and
BA22°
B6

and

is

is

BA34
B

CA2°

d

and

(5-16)



again with the column matrix 8j including only the degree-of-freedom
Y

components at the interconnection of Bodies i and j.

To complete the description of the

it is now necessary to explicitly specify

BC and CC and to show how the elements

are initialized. (Note that if System B

initialized as shown in Section 4.3.)

BBll
mnn

Cl1
B =
ab

C12
B

C1 3
B
a8

C 1

a

0

0

B12
mB

A13
Bk

8

BA230

_ 6_

BB13
B

BA14
kS

A240
6 8

CBl
m

Al
Ck

A20

C6

Flexible Combining Algorithm,

the elements of the matrices

of the matrices BA and CA

is a single rigid body, it is

0

All
Bk 

0

BA12
ky

A21° A22 0
B B

Si By

+ T i

a 
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(5-18)

(5-19)

(5-20)



BC21 = [BB2 1 - Q2]
Bab an I aQ a

C22 3
B = Qaa a8

C23 4
B = Qaa aa

CC2
a

5
= Qac

BC 31 = [B 3 1
orb an

ir BA31 
ad d I

i

Air BA32
ad dy 

C32 B32 ir A33
B =B +A B

a8 aB aa o8

C33 B33 ir A34
B =B +A B

aa a$ aa a8

= CB3 + Air CA3
a a8 C8

The Q to Q5 are defined as follows:

1 Aji(T) BA2 1 + ijQaZ Aact Baa + Zo a

2 - AJi(T) A22 + ij
Q a y + aay ao ay 1ac

ir A31
A B

op pRB

ir A32
op pY

3 BB2 2 +Aji(T) BA2 3 + ij Air
a8 a8 aa aB aa op

BA33
oS

= B23 + Aji(T) BA2 4 + ij ir A3 4

aB aB ao 9 aoa Ap pB

5 = CB2 + Ai(T) A
2

ij A 3
.+ A+

Qa a a8 CB aa 8 C

This completes the definition of the Flexible Combining Algorithm.

It now remains only to detail the initialization of Systems A and B for

this combining algorithm. However, before so doing the expanded form of

System C will be presented for completeness.
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(5-21)

(5-22)

(5-23)

(5-24)

(5-25)

CC3
a

(5-26)

(5-27)

(5-28)

(5-29)

(5-30)

(5-31)

(5-32)

(5-33)

I
I
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BBll
mn

O0

0

BB21
an

B tA
\ an /\ ac

0 0 1I

BA12
ky I

BAll
kZ

BA210 BA2 2 O 
_ _ - - - -ay.__ _ _- -

Q1 2 1

r A31 /ir A32\I B32
a ) aa cy cBa

BB12
mB

A13
BkB

A230

3

Qai

+ A
i r

B13
BS

A14
B

BA2 4 0

B
_ _ 

I

I (

BA3 3 IBB33 +
aa I 4

CB 1

m

cAl
ck

CA20 +

5

Q5
_ 

cB3

a

6 -' _ 

+ ir A3
+A CB

(5-34)

5.3 Initialization of the Flexible Combining Algorithm

As stated previously, if System B is a single rigid body, then its

initialization is identical to that of the Rigid Combining Algorithm presented

in Section 4.3. Initialization or loading of System A is as follows:

BAll mij j
kZ = %

BA 1 2 = m S 4 Gj+
ky kAd dy

BA13 mj Sj4 Aj - m AJi k
kO kcrkd ca ka d po

(5-35)

(5-36)

(5-37)
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*-4JY

:=

4
QaB

Air
aa

BA34
oS
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BA14
kB

cAl
Ck

- 2 H 8 ka 8

+ 4Qj
KkL J

= mJ J AJrm kU Air

Si5 + i S J7
a ka 'a

silo
k

+ v 4 qj + je
Qk

where M and % are respectively the Body j generalized mass and

stiffness matrices obtained from the Mass Properties Subroutine while

V1 is the input generalized modal damping matrix.UZ

BA21

BA2 2

ay

= mi sj8.
ac

= mJ SJ9 GJ+
cso dy

= mj Si9 Aji
aa aS

- mi sj6 A'i Zp
aa dp pa

m -a6 Air
ctc A a$

S5 + sj6 SJ7
+ 8 8 + i j 9 j

cia Sa 8

+ 2 SJ5 WJ + (pe

= mi A r(T) j (T)
ad a

= - mi Air(T) sj6
ad ap

Gj +
PY

= - mj Air(T) Sj6 Aji
ad op pa - mi Aaa() Qi

6 5as
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(5-38)

(5-39)

A23
A24

BA24
aa

(5-40)

(5-41)

mj S j 9
01a

(5-42)

(5-43)

CA2
a

BA31
aQ

BA3 2

ay

A33
Ba

BA34
B

(5-44)

(5-45)

(5-46)

(5-47)

(5-48)

=- mJ . kS

= mi



= - mJ Air(T) ISJ 7

aOr a

+ -j j6+ wP wPO S6 +2bp pB 8

si6 Si5
Ba 8

-j a WwP l~t

+ Rje
a

,
e

e je external
In the above equations, Q , ( i and R are external

eralized forces to be specified in Section VII. Finally, the Sj

SJ 10 are defined as follows (these quantities are computed for all

bodies at the time the auxiliary variables are calculated).

(5-49)

gen-

through

flexible

ji= Ajr ( 2 r i +

AJi i ~i ij
aa ap pB a

Sj2 = ij + 2 ij
a a a8 8

Si3 = Aio GO + Ai

+ AjJO GjO elo =

*r
WBO

-i
Wap

p100
a

i ar r r
+ Wp OW B

AJoi(T) - i AJJo GJo ljope ad a / £J 

[see (4-50)]

(5-53)= y8 - Hi

i Aji wi + 61+
a a8 8 ay

0jo
Y

+ Sj 3 , pl7
a a

Sj 6 = dj + Hj3

a a a

Si7 Sjil + Ai sj2
a a aa S

Sj 8 = yj(T) + Hj6(T) j sJ4(T)
aQt at aQ at

Si9 = I f + H 8 + H 1 0

a = aS a8 a 

1= (Nka + 5) Wa (

40

cA3
a

(5-50)

(5-51)

si5
a

(5-52)

(5-54)

(5-55)

(5-56)

(5-57)

(5-58)

(5-59)



In addition, the following quantities will be needed for the dis-

turbance calculations to follow and should be calculated with the above:

jl = ar(T) Aje(T) B'

Si2 = ar(T) Aje(T) Ci
ktB 6 6a kkaa

sJ13 qj Sj12
Z~ Y = q sij

1
2

Sj1 4 = Bk Aj a
ka k Bk Ao ar

siJ5 = Hjl2(T) + HJ9

(5-60)

(5-61)

(5-62)

(5-63)

(5-64)

Once again the arrays
r

Subroutine, while a
P

BkaB and Cj i are obtained from the Mass Properties

is determined by the Orbit Subroutine.
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VI. Distubance Subroutine

The Disturbance and Control Subroutines supply the perturbing forces

and torques required in Equations (4-56), (4-57), (5-39), (5-44) and (5-49).

At present, the Control Subroutine is not implemented, although the Gen-

eralized Control Interface Routine described in Section VIII is an integral

part of the program.

The general disturbance equations are as follows:

Tje = TjD + TjC (6-1)
a a a6

Fje = FjD + FjC (6-2)
a a a

Qje QJD + QJC (6-3)

Rje = RjD + RjC (6-4)a a a

aje j jD + jC (6-5)

where all the superscript jC quantities are presently void control vector

forces and torques and

Tj D = Tj A + Tj S + TjM + TJG + TjP (6-6)
a a a a Ca a

FjD FJA + FjS + Fj S + FjG + FjP (6-7)
a a a a a a

QjD = QjA + Q + G (6-8)
k k k k

RjD = RjA + Rj S + RjG (6-9)
a Ca a a

@ a a @ ~a + ®Os + i a (6-10)
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Definitions of the individual terms in the above relations are amply

provided by the flow-diagram of Figure 6.1 as well as by the table of

Section X.

The following sub-sections present the equations necessary for program-

ming the disturbances listed above (other than control disturbances).

Section 6.1 details initial expressions for the prescribed disturbances.

Section 6.2 (pages 45 through 60) details the environmental disturbance

equations for rigid bodies, while Section 6.3 presents the environmental

disturbance equations for flexible bodies. Since the rigid-body environmental

disturbances are identical to those found in the TRW GSS program, their

derivation can be found in Reference 1 and is not included in this document.

However, the derivation of the flexible-body environmental disturbances is

presented in Appendix B.

6.1 Prescribed Disturbances

Prescribed forces and torques are allowed to act about the Body j mass

center. Specifically, the following analytical representation is utilized

initially: (t
r

is a reference time, normally equal to zero)

F
j P

= C
j
f l + Cif 2 (t - t

r
) + Cf 3 sin jf (t - t (6-11)

TjP = Cjtl + Cjt2 (t - t
r
) + Cjt3 sin wjt (t - ) (6-12)

In addition to the above representation, Fj
P

and TjP can be input in
a a

tabular form.

6.2 Rigid-Body Environmental Disturbances

This sub-section details the equations for the rigid-body environmental

disturbances. The format herein differs from that of the body of the report

in that an original document is included here in its entirety. The reason

for this inclusion is simply that the coding of the program proceeded from the

equations contained herein and therefore it is felt that its inclusion would be

preferable to a complete reordering of the equations and updating of the notation.
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1. INTRODUCTION

In what follows, forces and torques , due to environmental disturbances
(**)resulting from aerodynamic and solar radiation pressure, gravitational

attraction, and magnetic interaction, acting upon the rigid bodies of the

spacecraft model are presented.

To this end and in view of the fact that the magnitudes of the forces

and torques resulting from aerodynamic and solar radiation pressure are

dependent on the shape of the surfaces over which they act, four basic

shapes are provided for use in their computation. These consist of: a

sphere, flat plate, circular cylinder, and a rectangular parallelepiped.

In contrast, the gravitational interactions are dependent on the mass

distribution of the bodies and their relative positions, whereas the mag-

netically induced forces and torques are only dependent on the positions and

orientations of the bodies. Therefore, the latter two disturbances can be

applied to an arbitrarily shaped body.

In the next section the force and torque (moment) equations for the

four basic allowable shapes are detailed. The equations are expressed in
f f

terms of a unit flow vector 6 , a force P and appropriate constants

Gj f Hj For solar disturbances, 6 becomes a unit vector 6

directed along a line from the sun toward the earth, P becomes the solar

radiation pressure P , and Gj , H become functions of the solar

reflectivity coefficient v . For aerodynamic disturbances, 6 becomes

a unit vector 6a directed along the negative of the spacecraft's velocity
f a jf

vector, P becomes twice the dynamic pressure P , and G f , f

become functions of the so-called aerodynamic reflection coefficient .a
f f jf jf

More specific values of P 6 Gj and H are given in Section 3.

These forces and torques will contribute to the vectors Fi and Tje
defining the externally applied forces and torques, of Section IV.

(**)The aerodynamic interaction implied here is that corresponding to free
molecular flow.
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Also included in this section are the gravitational and magnetically induced

forces and torques. Section 4 contains a detailed input/output specification.

In this appendix, matrix notation is used instead of the index notation

employed throughout the body of the report. Given the following notational

clarifications, this use of matrix form should not present difficulties in

interpretation:

(i) The vector f is represented as a column matrix by {f}j where j

denotes the coordinate system in which the components of f are

given: i.e.,

ejt f.e
2

ej
3

j equal to r implies components in the orbital reference coordinate
r r r

system (xl , x2 , x3), while j = e implies components in the inertial

reference system (1 3)

(ii) A above a symbol denotes an outer product matrix: i.e.,

-r r -r r
0 - . e3 w e-3 -2

{^r} ._r -r r
-rw e 0 -w e

-r r -r r
- .e w .e 0

-sso2 m i 

(iii)A superscript T on a matrix denotes its transpose.
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2. GENERAL FORCE AND MOMENT EQUATIONS

2.1 Forces and Moments on a Sphere

If Body J is modeled as a sphere, then its surface is defined by

the-scalar radius RJS.

The total force on the sphere is given by

{FJf = T RJ sPf I J + GJ ] {6 f (1)

and the total moment about the sphere's mass center is

{TJf = {hLP}J {FJf} (2)

Where Lj p is the vector position of the geometric center of the sphere

as measured from its mass center

2.2 Forces and Moments on a Flat Plate

If Body J is modeled as a flat plate, then its surface is defined

by its scalar area Aj and by a unit normal vector ejf as shown

in Figure 1l. The plate need not be rectangular.

Jrf

Area Aj

Figure 1. Surface Specification for a Flat Plate
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The total force on the plate is given by

(F f} = pf A | cos nj [HJf cos n {elf}j + GJf {6f}] (3)

where

cos J = {eIf { 6 f (4)

The total moment about the plate's mass center is

{jTi}% = {fPlt {*Fj} (5)

where i- P is the vector position of the geometric center of the plate as

measured from its mass center.

2.3 Forces and Moments on a Circular Cylinder

If Body j is modeled as a right circular cylinder, then its surface

is defined by its scalar radius and length, Rj
c
and hj c respectively

and by a unit vector directed along its axis, eJf as shown in

Figure 2.

f f

Rjc

Figure 2. Surface Specification for a Cylinder
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The total force on the cylinder is given by

IF fj - f Ric [hc sin n (4/3 Hfs+ 2GJS) + i Rc Icos nt j Ge]{f}1

(6)

+ Pf R cos n[- 4/3 HjshJc sin n + W RjC- Icos nl He] (1ejfj

and the total moment about the cylinder's mass center is given by

{Tf} 1j Rc h
j c

Pf cos nj (Gj
s

- Gie) {aef} {6 f}

(7)

+ -{ LD} {Fj}f3

where LIP is the vector position of the geometric center of the

cylinder as measured from its mass center.

In the above expressions, Gj s and Hjs pertain to the sides of the

cylinder while Gj e and Hje pertain to the ends of the cylinder and

cos nJ = {e f}jT {6f}

(8)

sin r j = + 1 - cos 2n

2.4 Forces and Moments on a Rectangular Parallelepiped

If Body j is modeled as a rectangular parallelepiped, then its

surface is defined by three unit vectors (e31 2 , e 13 , ej
2 3

) normal to

any three nonparallel sides, and the lengths of these three sides L j ,

L j 2 , LJ 3 . Orientation of the unit vectors is shown in Figure 3,

where in general ej OB is normal to those sides with area Lj
a
LjB.
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13

,<~~~~~~~

eJ23

Figure 3. Surface Specification for a Parallelepiped

The total force on the parallelepiped is given by

FJ = pf LJ LJ2 |cos nJ121 [HJ12 cos nJ12{ei12} + GJ12{6f} ]

+ Pf Lj1 1 J3 cos TJ1 3 i [HJ13 cos nI13 {ej 13j + G13j{6f}] (9)

+ Pf Lj2 LJ3 icos nj23 [HJ23 {cos in J23)J + GJ2 3 1f} I

and the total moment about the parallelepiped's mass center is given by

{T') 1 }- r 1 2 LJ3 Pf [GJ12 c 11n12 J12 + GJ13 cs nJ113jA13

+ GJ23 cos nJ23 { J23}{6f + {1I'J {FlfA (10)

where Gja8, HIj pertain to those sides of area Lj a LjB and

cos i -aB {e J}%T 1 6 f}j (11)

Once again, i- p is the vector position of the geometric center of the

parallelepiped as measured from its mass center.
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3. Specification of Pf, cGf, HJf and {&f)

In the previous section, force and moment expressions were given for

the four basic allowable shapes. These expressions contained quantities

which depend on the nature of the flow, quantities which will now be

defined.

3.1 Solar Radiation Pressure

If solar radiation pressure forces and moments are required, then:

I) Pf = P, the solar radiation pressure constant (PS varies as the

inverse of the square of the distance from the vehicle to the sun,

and is approximately equal to l.005 x 10- 7 dyne/cm
2

in the vicinity

of the earth's orbit).

II) {df} =j{s6s , a unit vector directed from the sun toward the

earth. In particular,

{6s} = {Aje)} {6s (13)

with

-sin 8
s

cos 0.13Tu

{6

s

}
e = sin 8

s
sin 0.13r (14)

-cos 8

where

8s = 24 Ds [radians] (15)
365.24

and Ds is equal to the number of days after the autumnal equinox

(it is assumed that 8s is a constant for the period being considered

and D
s

is a mean value). In Equation (13), {Aje} is obtained from

the auxiliary calculations.
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III) G f = l- (16)

Hj f = 2vj

where vj is the solar reflectivity coefficient for the appropriate

surface.

For the sphere and flat plate, only one value for vj need be

specified.

For the cylinder, two distinct values for vj may be specified,

one for the side and one for the ends of the cylinder.

For the parallelepiped, three distinct values for vj may be

specified, one for each pair of parallel sides.

3.2 Aerodynamic Pressure

If aerodynamic pressure forces and moments are required, then:

I) Pf = pa, twice the dynamic pressure. In particular,

pa = p V2 (18)

where V2 is the square of the magnitude of the spacecraft inertial

velocity,

V2 = l{r}t {r r

in units of [LT -2]

Here, {Rr} is obtained from

atmospheric density..

II) {s f}I {da , a unit vector

inertial velocity vector. In

saj a}_

where {br} is obtained from

e e

the Orbital Subroutine and p

(19)

is the

along the negatiye of the spacecraft's

particular,

-{ AJe {b re (20)

the Orbital Subroutine.
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III) Gj f = oj

Hjf = 2(1-j)

where aj is the input aerodynamic reflectivity coefficient for the

appropriate surface.

For the sphere and flat plate, only one value for aj need be

specified.

For the cylinder, two distinct values for aoj may be specified, one

for the side and one for the ends of the cylinder.

For the parallelepiped, three distinct values for oi may be specified,

one for each pair of parallel sides.

3.3 Gravitational Force and Torque

I) The gravitational force acting on the rigid Body j is given by

·{FJi j = m)3 [{Aj}{R} - 3 {AJe}{ar({RJ} {A re}{a}e)] (21)

where y is the input gravitational constant for the orbited body as used in the

Orbital Subroutine, {a
r

}
e is obtained from the Orbital Subroutine, and mj is the

mass of Body J.

II) The gravitational torque on Body j with respect to its center of mass is

{TG}j = 3y AJe} {ar {A Je}T {i } {AJe}{ar} (22)
(Rr)3 j

where { IJj are the components in the Body j axes of the centroidal inertia
tensor of Body j.
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3.4 Magnetic Torque

I) The magnetic torque on Body j resulting from its interaction with the

geomagnetic field is given by the expression

{TjM} = {i} {jiM}

wheej ij th

where Hm is the magnetic field strength of the earth at Body j and { &
j~~~~~~~~~~~~~~~~~~~~~

is the magnetic moment of Body j. The geomagnetic field strength at

Body j can be approximated by the expression(*)

{HMM} = _ 3Me

Where 4e is the magnitude. of

Me = 8.06 x 1025 oersted-cm3

Body j coordinates gives

{HjM

sinX1

sin 2X

cosX1

sinX 2 cosX 2

- 1/3

sinX2 cost2

(24)

the earth's magnetic dipole moment. Typically,

for the earth. Expressing equation (24) in

= {Are}{DeG}{CGM({HM
M
}

(24.1)

{MJi j = {AJ r}{HrM}r

II) In the above expressions

=2 = sin-1 [{D2 }T {C MG}{D e {Aer} {D3 }]

1 = sin-1 {D
1
} {MG}Ge {Aer {D3 } 

1 1{D2 {C G{DGe} {Aer {D3 ]2

(*)Equation (24) is based on a tilted dipole model of the geomagnetic field.
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0 ; D3 0

0 

{DF =

cosIG

0

s inVG

cos 80 cos 9

-sin 11- os
180 9

sin

0 -sinTG

1 0

O cos
G

sin 180

os 180

0

Ilr .
-cos 180 sin -

180 9
sin 180 sin

cos 9

{ CG} = {C }

{ DeG } {DGe}

G = tan
sind3 cos (0.131r)

coseS
+ 28r

86,400

t - time in seconds after noon (GMT)

{AerI}, {Are

t Gt

365.24
365.24
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4. SPECIFICATION OF INPUT AND OUTPUT QUANTITIES

The required input and output quantities will first be specified for

the case of solar radiation pressure disturbances. Conventionally, (IC)

denotes an input constant and [1] denotes a non-dimensional quantity.

4.1 Solar Radiation Pressure Disturbances

General Input Quantities

PS , solar radiation pressure constant (IC) [M

D s mean number of days after autumnal equinox (IC) [DM

{Aje, transformation matrix [1

4.1.1 Sphere

Rj s radius of the sphere (IC) [L

LJP position vector of the sphere's geometric

center as measured from its mass center (IC) [L

vj , solar reflectivity coefficient (IC) [1

4.1.2 Flat Plate

Aj , area of the flat plate (IC) [L

,{ iunit vector normal to flat plate (IC) [1

{Lj} , position vector of the plate's geometric center
J a measured from its mass center (IC) [L

Vi solar reflectivity coefficient (IC)

L-1 T-2]

ays]

]

]

2]

]

.1

[1]I 1 J

4.1.3 Cylinder

RJcRj c

hjc

le jf}~ 

radius of the cylinder (IC)

height of the cylinder (IC)

unit vector along axis of the cylinder (IC)
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{Li P}

js vje

4.1.4

{e j2j, {e 3}.,

{LjP}j

vj12 vj13 V ,IV , V

position vector of the cylinder's geometric
center as measured from its mass center (IC)

I solar reflectivity coefficients for sides and
ends of the cylinder (IC)

Parallelepiped

I lengths of sides (IC)

{ej2 3 , unit vectors normal to sides (IC)

position vector of the parallelepiped's
geometric center as measured from its mass
center (IC)

j23
solar reflectivity coefficients (IC)

General Output Quantities

{FJS} solar force on Body j

I{Ti S} solar moment about Body j mass center

4.2 Aerodynamic Pressure Disturbances

General Input Quantities

{Rr} velocity vector of the orbital reference frame

{Ate} transformation matrix

{br}e unit vector parallel to R

4.2.1 Sphere

Rj s , radius of the sphere (IC)

{LiJP} , position vector of the sphere's geometric
j center as measured from its mass center (IC)

aerodynamic reflection coefficient (IC)

[LI

[Ill

[LI

[1]

[L]

[1]

[,LT-2 ]

[ML2T-2]

[LT
-1
]

[1]

[1]

[LI

[L]

[11
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4.2.2 Flat Plate

Aj , area of the flat plate (IC) [L2 ]

{eif } , unit vector normal to flat plate (IC) [1]

{Lj} , position vector of the plate's geometric
center as measured from its mass centet r (IC) [L]

0a aerodynamic reflection coefficient(IC) [1]

4.2.3 Cylinder

Rjc radius of the cylinder (IC) [L]

hc , height of the cylinder (IC) [LI

{ejf} unit vector along axis of the cylinder (IC) [1]
J

{LJP}. position vector of the cylinder's geometric

center as measured from its mass center (IC) [L]

aj, aje aerodynamic reflection coefficients for sides
and ends of cylinder (IC) [1]

4.2.4 Parallelepiped

Lj 1 , Lj 2 , Lj 3 lengths of sides (IC) [L]

({e12}j,{ej13}j,{eJ23}j , unit vectors normal to sides [1]

{ Ljp ' position vector of the parallelepiped's

geometric center as measured from its
mass center (IC) [LJ

aj12,j13,oj 2 3 aerodynamic reflection coefficients (IC) [1]

General Output Quantities

IFih) aerodynamic force on Body j [MLT ]

{TIA}. , aerodynamic moment about Body j mass center [ML2T 2{~~~~~~~~~~~~~~~~~~~~~~~~~[~tTAi
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4.3 Gravitational Force and Torque

General Input Data

Y

mj

RrR,

IA e}4R11,
{ar}

{Are}

General Output

gravitational constant for the orbited
body (IC) ,

mass of Body j (IC)

magnitude of orbital radius vector

transformation matrix

vector from orbital reference to Body j
mass center

transformation matrix

unit vector parallel to R

transformation matrix

Body j inertia matrix (IC)

Quantities

{FJG}

4{Tjic

4.4 Magnetic Torque

gravitational force on Body j

gravitational torque on Body j

General Input Data

magnetic moment of Body j (IC)

magnitude of earth's magnetic
field (IC)

transformation matrix

[ML2T- 2 (oersted) ]

[L3 (oersted)] 
®

[1]

(*) 2-2 -1 3
[ML T (oersted) ] is equivalent to [L -(oersted)]. The latter
form is included for the user's convenience, since the torque then
has the proper dimensions of

[T M] = [ML2T-2(oersted)- 1 [L3-(oersted)] ML2T-2

L3 59

59

[L3T-2 ]

[M]

[L]

Il[]

[L]

[1]

[1]

[1]

[ML2 ]

[MLT- 2]

[ML2T- 2 ]

{Mi }
Me

Aj e}



transformation matrix [1]

mean time in seconds after noon (GMT)(IC) [sec]

mean time in days after autumnal equinox (IC)

General Output Quantities

TiTM}j , magnetic tc

HrM}r , earth's mag

orque on Body j

;netic field strength at Body;

[ T- 2 (oersted)-1 ]

[oersted]
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6.3 Flexible Body Environmental Disturbance Equations

The following equations constitute the generalized forces acting

on the flexible bodies of the spacecraft model due to solar radiation pressure,

aerodynamic pressure and gravity gradient effects. Derivations are con-

tained in Appendix B.

Note here that those environmental disturbances of concern in the

analysis of the Skylab vehicle have all been included (solar, aerodynamic,

gravity) while magnetic disturbances are neglected since the design of the

various flexible arrays (negligible dipole moment requirement) precludes the

problem of magnetic interaction.

Rjs = P A A jr(T) { Vi Bi (Bj(T) Aje Se
a as a a Iy y

(6-13)

+o() A Sp+ (l - Vi) AJe Se B |Bi(T) A e Se
6a a a ap P

jS = P B (BT A B Se
QS kS 6 a ay y(6-14)

+ (1 - vj ) Ae se } IBBj (T) Aje sel
6O a a ap p

®Js = p5 Ai { {(1- B (BJ (
T

) Ae by

(6-15

+ (l -v) Aje eS e BJ (T) Aje br
06 ~S j' 'a Op p

RjA = -pV2 A
j

Ajr(T){ (1 - o) B1 (Bi(T) Ae br)
t a6 0 & Sy y

(6-16)

+ dj Aje br } B(T) Aje bri
06 6 ) op p

QjA - p
2

Ai IL (1 - aj B
1

(Bl(T) Ale br)
k k 6 6y y

(6-17)

dj Je br } 'B(T) Aie br
0 A6 a a uop p

61



2 -01Jj3 (. ,) · (i(T) 3 JA = _ -pV2 Ai (r + H (1-d) BH) (B Ae b)

(6-18)

+ Cj jAee Se IBj(T) Aj; br

RjG ymj 3 Are ar (T
) Are ar )

ca (Rr)3 ca a a a op p (6-19)

+ Air(T) HJ 3 Are ar(ar Aje(T) H13)]

QjG E Ai rrl + + q +j 3 cj 

Qk (R)3 (6-20)

Aje r r(T) Are(T) I je ri- 3 4 A3 aB (a Ar aop

jG+ 3m Aje ~r AJe(T) ijf Aje r
aL (RR3 + a,6 d)a p p

(Rr)3

;MJ 16 |r ~ i d i(6-21)Yi. J S Jj6 A= e r ((T) Are ar) (6-21)

(R r ) 3 s ;S J; 6 a$ a6 36 d p P

je r Aje(T) (b (T) + sJ11(CT) J13(T) 
a$ $6 6 ck ' 'k

where

Cjk = i ()+ Air(T) ,ij (6-22)
a + ; ;d (6-22)

1k 

=ar(T) Aj e (T) B1 (6-24)
ka ae k~a

Bi=1 f B r j J dmi (6-25)

= ar(T) Aje(T) Cj Aje ar6)

cji f i _J din (6-27)
kgB- mJ Bik d
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S
i ll

= ar (
T

) Ae(T) Bka (6-28)

sJ12 = arT) Aje( T) Ca (6-29)

S0j3 =q Sj12 
(6-30)

k a q k (630
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VII. Orbital Subroutine

The dynamic equations for a multibodied flexible spacecraft presented

in the previous sections of this report are written with respect to a

reference axis frame. One important choice for specification of this reference

axis frame is that it lie on a user-defined Kepler orbit. The orbit routine,

as specified in this section, calculates this reference orbit. The orbit

equations contained herein were specified concurrent to the rigid-body

environmental disturbance equations and thus are likewise included here

in their original form in order to retain correspondence with the computer

programming documentation. As in the case of Section 6.2, matrix notation

is used herein instead of the index notation employed throughout the body

of this report. (The orbit subroutine commences here with Section 2.0

following.)
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2.0 COORDINATE SYSTEMS AID NOTATION

In describing the motion of the reference axis frame, two right-handed,

orthogonal coordinate systems are of basic importance. These coordinate systems

are defined and described below. The inertial reference frame is defined with

respect to the earth as the orbited body. In case orbital motion about another

celestial body is desired, an appropriate inertial reference frame must be defined.

2.1 Inertially Fixed Coordinate System

The inertially fixed coordinate system with axes (xl, x
2
, x

3
) has its

origin at the mass center of the earth and is defined by unit vectors e
e e
2' ee3 directed along the appropriate axes in a positive sense. The unitvec2To e e3

vector e is normal to the equatorial plane and positive northward, while
e
3 is directed along the autumnal equinox. The coordinate matrix for this

system is given by

e

e (2.1)

e
3.

Since the coordinate system is inertially fixed, its rotational velocity vector

is given by

m 0 (2-2)

2.2 Orbital Reference Coordinate System

The orbital reference coordinate system with coordinate axes (x, r2, xr3)

is defined by unit vectors r such that er3 points toward the earth's
rmass center, e lies in the orbit plane and forms an acute angle with the

tangential velocity vector while r2 is normal to the orbit plane. The coordinate

matrix for this system is given by
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er

r

- r

{er} je2| (2-3)

and its angular velocity vector is denoted by

r #0 . (2-4)

The vector distance from the center of mass of the earth to the origin of

(x
1
, x

2
, xr) is .

2.3 Notation

The following common notational rules will be used in the sequel:

(i) The vector f is represented as a column matrix by {f}. where j

denotes the coordinate system in which the components of f are

given; i.e.,

f e

*-2

f .
-3

j equal to r implies components in the orbital reference
r r r

coordinate system (xl, x2 , x3 ), while j = e implies components

in the inertial reference system (xl, x2e, x).

(ii) A Aabove a symbol denotes an outer product matrix; i.e.,
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J r .e 3

r

--r r
-~ ,_

2

-r r

-r r. .e

-r r

--r rI-W . je

0

(iii) A superscript T on a matrix denotes its transpose.

--r
The following sections are devoted to the determination of R', W and

their required time derivatives.

3.0 ORBIT EQUATIONS

Let us now define the orbit equations for the reference frame (lX 2,X3).

The position of the reference frame is determined by the equation for an inverse-

square central force

2 -r F
dR = g
dt2 M

where

F g
g

yM -rR_ r R
(Rr)3

total spacecraft mass, [M]

magnitude of R [L]

gravitational constant for the orbited

where G is the universal gravitational

and M is the mass of the orbited body

body (GMb) [L3 T- 2 ]

constant

(For the earth, y = 3.98604 x 10 km3 /sec2 = 1.40766 x 1016 ft3/sec2)
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with: M =

r =R =

Y =



Thus, the position of the reference frame is determined by

2--r -r
dR = _ yR

dt2 (r)3

Equation (3.1) represents the motion of

a spherical planet, Figure 3.1.

Apogee

a point in an elliptical orbit about

Position of reference
frame

Perigee

Figure 3.1 Orbit Parameters
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Letting

P = orbital period (T]

e = eccentricity of orbit [non-dimensional]

the semi-major axis of the orbit is given by

, 2/3

a = (Yf--) 2(LI (3-2)

where the "mean motion" w is defined by

= 21T [T-1] (3-3)
o P ,

with w0 being the equivalent circular orbital frequency in radians per

unit of time.

The true anomaly i is determined by

P = 2 tan [ ()] (3-4)

where the eccentric anomaly E must be found as a solution of Kepler's

equation

E -s sin E = °0 (t - tp) . (3-5)0~~~~~~~~~~~35
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Here, tp is the time at perigee and the quantity w (t - tp) is the mean

anomaly.

The radial distance to the reference frame, Rr, is given by

Rr = a (1-c
2

) . L]
1 + cost

(3-6)

In addition,

7= 7a¥(1-2)

Rr2
[T-1] (3-7)

By differentiating the above relationships we find that

a (1-E2 )

Cycos Ai

Rr 2

E sinp [LT 
1
]

[LT-2]

I'
2 cysin$

Rr 3R
[T-

2 ] (3-10)

0 MOTION OF ORBITAL REFERENCE SYSTEM

The inertial reference system (xl, x2,x3), the orbital reference system

(xl, x2,xr), the transformation between them {Are} and the angular velocity
-r

vector W of the orbital reference frame are independent of the relative motic

of the bodies of the spacecraft and can be written as functions of the orbit

parameters and time, We now determine these functional relationships.

4.1 The Inertial Reference Axes

The inertial reference axes have their origin at the center of mass of

the earth.
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The x2 axis is normal to the equatorial plane and is positive in the north-
eward direction; the x
3
axis lies along the autunulal equinox.

e
42

Equatorial Plane

Autumnal Equinox -

Figure 4.1. Inertial Reference System

The coordinate matrix of the inertial axes is given by (2-1) as

e

fel e

e
e3

4.2 The Orbital Reference Axes

A rotation of the inertial axes through an angle B about the e axis

produces the {e}system in which e3 lies along the line of nodes (intersection

of the orbit plane and the equatorial plane, Figure 4.2) with e directed toward
-the ascending node.3

the ascending node.
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B
-ti

e
el

Ascending Node

Figure 4.2. Line of Nodes

let {Ame } be the transformation matrix which

transforms the {ee} system into the {eB } system such that

{Ž} {Ae} { ee}

O[ cosin

{A3e} =
Lsino

0 -sino -

1 0

0 cosP 
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e 3
-2 -2

ee
-3

With e _ =

eg
-l

ep
3

where

(4-1)



and

-sinA

Rotation of the {e:} system,

inclination angle , produces

orbit plane.

0

0

0

-cosP 1
0

-sing -

(4-2)

Figure 4.2, about e3 through an angle t, the orbit

the {e } system, Figure 4.3, where -e lies in the

e $
e 2 = e-2

Orbit Plane

1

Equatorial Plane

e

Figure 4.3. Orbit Inclination

73



With {et} =

t
e -

t

let (A 0be the transformation matrix which transforms

-
-z-

the {e} system into the {et} system such that

{et} = { {e

where

cos e

{ I = -sint

_- 

sint

cose

0

0

o 
1 

(4-3)

Since t is a constant, i = 0 and

{A } - O.

Rotation of the {e1}system, Figure 4.3, about e

{et} system, Figure 4.4, where e passes through

reference frame.

(4-4)

through an anglea produces the

the orbital position of the

;-1

Orbital Position of Reference Frame

,-Orbital Position of Reference Frame

Figure 4.4 Orbit Angles
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} syste

eC

a , let A }be the transformation matrix which transforms

ee

am into the {e_}system such that

{ea} = {A&X}{eg}

where

CosOa

L sina

-sinat

- CSCosa

0

1

0

-sina]

cosQ

0

0

0

(4-5)

(4-6)

-cosi]

-sina _

r r r r rThe orbital reference system (xl, x2, X3 ) with unit vectors e1, 2,'
r r3 has its origin at the orbital reference point, with e3 pointing toward

nadir, r in the orbit plane forming an acute angle with the velocity vector

and er normal to the orbit plane, Figure 4.5.--2
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Figure 4.5. Orbital Reference System

Thus,

er er - = r ' SI Li," --2 -2' r3 3

Letting {e r

which transforms

1e 1 and letting {A
r
a} be the transformation matrix

e m into 

the/{ esystem into the {e } system, we have

{-r } { ra {

where

{ Ar} 0

o
-1 0

0 -1

and I{rt} 0
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Combining the previous equations,

er= } A r}{A } {I }

or, letting {Arr} = {Are} {Aa},

jI -= Arlt {e

where

cosa

{Ar -s = in

-sina

and

0 -CosC

0 O°

0 sinaj

Similarly,

or letting,

{er} = {Ar }{At} {Ae} {e
e

}

{Are} = {Ar }{At} {Ap} I

{} = { Are} {( }
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0

-1

0

-sina]

-cost j

(4-9)

{Art}, &

-sing

0

-CosOa

(4-10)

(4-11)



where

(cosacostcosP-sinasinf) (cosasint)

{Are} ( sintcos ) ( -cost )

(-sinacosfcose-cosasinp) (-sinasint)

(-cosacostsinj-sinucos) 1
( -sintsinP )

(sinacossinp-cosaccosI )

Thus, {Are} is a function of the three orbital parameters 1, tand a.

The angle ahas been defined as the orbital position of the reference frame with

respect to the ascending node while Ohas previously been defined as the true

anomaly or as the orbital reference position with respect to perigee. Therefore,

if a is the orbit angle between the ascending node and perigee, then
P

a= a +4
p

and from Equation (2-7), (2-10):

4a= , = iaY (1 -c2
)

2
Rr

a= ~ = -2EY sin'
R3
R
r

, [T-
1

]

i[T-2

(4-13)

(4-14)
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The orbital inclination, C , is an input constant. The nodal regression

rate 8 due to the orbited body's oblateness is given by

3j 2

2 = cos ( [T-1 ] (4-15)
2(1- c2)2

where R is the radius of the orbited body and J2 is the

second harmonic of the orbited body's gravitational potential. For the earth,

Rb = 6.378 x 103 km - 2.093 x 107 ft

J2 = 1082.28 + 0.3x 10 6

(The above expression for B as well as the value for J2 of the earth are found

in the Reference below (*). If B is the value of 6 at time of the first
o

nodal crossing, tn , then the parameter B is given by

= 3o + 3(t-tn). (4-16)

Since the matrix · B is zero (Equation 4-4), differentiating the relation

for 4Are} gives

{Are} = {Ar {A A
f
} {AAe} + {Ar }{A }{Ae} . (4-17)

But, it can be shown that

{Are} - {2r}{Are} .(4-18)

Rewriting Equation (4-17), we find that

{re} = {r } {Ar} Ae}+ {Ar}{A } {g3e} {e}T {A T {Art}TTAre}

so that

{Ar) {Ar3e {An} - {Aj{Aj }{A } {A } (Add} (Art} (
(grJ;PA n·'i ~~)' - (·( A AS)~8·) G~e~T (*fb T ~fJ~ (4-19)

(*)Escobal, P. R., Methods of Orbit Determination, John Wiley and Sons,
Inc., New York, New York, 1965.
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Expanding the above expression,

{r} {Ar} + {Ar}

where

sintco

{m } B -cosr
-sintsin

0

-1
{n~r} 0

Therefore,

{ rw.} ,=
sinkcoscY

- A cost-&

- A sinksina

and, since t is constant,

{or} =

-p sin f sin a

-a

-j 4sintcos a' ';

I
(4.20)

(4-21)
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Finally, letting

Sr 2 = 0 (4-22)

the following quantities are defined:

{Rr}e = -Rr {Are} { (4-23)

a{ar~ = ~Rre/Rr (4-24)

{r e = {Ar ( { r r{ (4-25)

2 = k{r }e {( e (4-25.1)

br = {r ,3/V (4-26)

Rr = - {Are} (Rr r} + 2 kr r} {s I

+ R } ir S} + R {wr { r { ) (4-27)
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5.0 CONCLUSIONS

We have here documented the determination of those orbital parameters

necessary to specify the reference axis frame in the given Kepler orbit.

In particular, the requisite input parameters are simply:

ao = orbit angle from line of nodes at time zero. [radian]

·I = orbit angle between ascending node and perigee. [radian]
P
Bo = angle between autumnal equinox and the ascending line of nodes

measured in the equatorial plane at time t . [radian]

P = orbital period [T]

e = orbital eccentricity. [-]

= orbit inclination with respect to equatorial plane.[radians]

Rb = radius of the orbited body IL]

y = gravitational constant for the orbited body [L3 T 2 ]

J
2

= second harmonic of the orbited body's gravitational potential [-I

t = time of first nodal crossing (-P't nO) [T]
n n

The output parameters are:

Rr = magnitude of orbital radius vector Kr [LJ

V = magnitude of orbital velocity vector R
r

ILT - 1]

~{IW = inertial angular velocity of orbital reference frame T -1]

{wrX U= inertial angular acceleration of orbital reference frame [T
-

23

{ Are} = transformation matrix from inertial to orbital reference axes [-H

{Rr} column vector representation of R
r
. [L]

{ar} , unit vector along Rr. [_]

{jRrj. column vector representation of R. [LT 

{brfe unit vector along R [-]

= r )column vector representation of R . [LT ]
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6.0 EXISTING COMIPUTER PROGRAMS·

Since a digital orbital routine identical to the one presented in this

report has been successfully coded in the existing TRW Generalized Spacecraft

Simulation (GSS) program, this routine is included here for

reference purposes. (Note change in expression for 3 and inclusion of (59)-(65).)

6.1 Subroutine SET0RB

This subroutine initializes the orbit parameters and computes the con-

stant portion of the orbital computations. The initial eccentric anomaly (EK)

is computed and used as the starting value for the first iteration of Kepler's

equation. TPER, the time at which the spacecraft last crossed perigee is com-

puted. The semi-major axis of the orbit (AXIS) and a related constant (AESQ)

are computed from which the nodal regression rate (BD0T) is computed.

SUBROUTINE SET0RB

a = a
0

= a -a
o p

= 2.Tl (4_ sin~k)
Fk 2' T an 1.+ 1.+cos(O)

* TPER = -(Ek- esin(Ek))P

2w

= 0

* a - (P"y/27)2/3

AESQ w a(l.- c2)

- 4 __2 ( 2n cos ()

2.(1_c2)2 P
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6.2 Subroutine ORBIT

This routine computes the orbit angle ALPH (the true anomaly measured

at the center of the earth between perigee and the origin of the reference

frame) at time T by solving Kepler's equation using Newton's method of

iteration. Each iteration is begun by assuming the previous value of ALPH

as a starting value. A maximum of ten iterations is allowed, the iterations

ending when the difference between two successive values is less than 10-5

If this condition is not met within ten iterations, the initial value is

changed, a message is printed out and the program begins the next case.

All orbit related parameters are computed within this routine, including

the orbit radius (RR),the radial velocity (RRDOT) and acceleration (RRDDT),

the orbital angular velocity (PSDOT) and acceleration (PSDDT), the angular

velocity of the orbital reference frame relative to inertial axes (0MRRC)

and its derivative (OMRRD), the gravitational acceleration at the reference

frame origin (CONG), and the angle between the autumnal equinox and the line

of nodes (BETA).

SUBROUTINE ORBIT

* (1) ECOUT = 2ir (T - TPER)/P

(5) SLOPE = 1. - cos (Ek)

(7) STEP = Ek - esin (Ek)- ECOUT

SLOPE

(8) Ek = Ek - STEP

(22) Ek = Ek (1. - 0.1 KP)

where KP = Number of Restarts

84



(36) 2. Tan [ e T ()

1. +Ecos (1)

AESQ/ECPS

2
y/Rr

E sin(e) y¥/AESQ

C0NG e cos(4)

~¥ AESQ /Rr2

(50)

(53)

(4 8)

(49)

(57) { A A:

(58) jaX 

-2.Y E

po+ (t-tn) :

Isin(O) cos(a)

-4 cos(Q) -4i

- 4 sin () sin(a )

-l.' sin(t) sin(a)

-a p sin( )cos- (0)

(59) {Are}

(cosacostcosP-sintsinp) (cosasint)

( sintcosP ) ( -cost )

(-sinacosgcos -cosaGsinP) (-sinasin4)

(-cosacosgsinf-sinucosp)

( -sintsinP )

(sinarcosgsinp-cosacosP )

85

ECPS

Rr

C0NG

(44)

(45)

* (46)

* (47)

sin()/.r3



{srI =|

{Rr} -Rr {Are}T {Sr
}

I e

{ark 

e

{ Rr}e

V2 =
2

{bjri =

IR-r) =

{r e/R

{Are} (r { s } + Rr {r {S })
r

{A r R T{ er

{i·r }e/V

- {A e (r S + 2 r {r}r {s}

r Bur) {Sr} + R { r {} r )
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* (60)

* (61)

* (62)

* (63)

(63.1)

* (64)

* (65)

4



Slope of Kepler's Equation.

Zero slope is error condition.

Ccmpute one iteration of Kepler's
equation using Nevton's method.

Equation is solved Fhen iteration
is less than 10-5.

Iterate 10 ties.

If no solution, restart with
different initial value.

Restart & time XXsIU

If no solution, e*xt ilth
error fla set.
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Compute orbit angle.

Compute orbit radius

Gravitational onnstant at orbit
radius and radial velocity.

Radial acceleration and angular
velocity.

Angular acceleration

Angular rate of orbital axes in
orbital cocrdinatea.

Angular acceleration of orbital axes
in orbital coordinates.

248

*

*

*

*

*

*

{ar r}

{4br }e

{Rr ye

1,,r ;

ii.ri 

= (62)

= (63)

= (64)

= (65)
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VIII. Control Subroutine

The UFSS Program contains a generalized control subroutine capability

which allows the user to quickly and efficiently synthesize almost any con-

ventional continuous attitude control system. The control system simulation

capability is fully described in Reference [4]; this preent section describes

the interfaces between the dynamics and the controls subroutines.

Figure 8.1 presents a data flow diagram showing the various features

of the Dynamics/Control Generalized Interface. The Sensor Interface generates

the transformation matrix Ajcnj and angular velocity components ijcn

necessary to simulate the nth attitude and/or rate sensor mounted at node

N (or at position rN ) on a given Body j of the spacecraft model; these

quantities are then transmitted to the Control Routine for use in performing

the attitude and rate error calculations.

The Generalized Force Interface accepts as inputs the forces and

torques produced by the Control Routine and transforms them into the gen-

eralized forces required by the Dynamics Routine.

If the control and steering laws (or any relationships existing in

the control system) involve the solution of a differential equation, then

the appropriate dependent variables are referred to as components of a control

state vector. These control state vector equations must be added to the

dynamic state vector equations and integrated simultaneously; this combining

of the dynamic and control state vector equations is effected in the State

Vector Augmentation Interface.

8.1 Sensor Interface

Assume that the nth control element (sensor or controller) for Body j

is located at node N . In order to locate the elements sensitive axis, it

is necessary to determine the instantaneous orientation of an axis frame

located at node N and fixed in Body j. Specifically, if ejN is an axis

frame based at node N and parallel to the ej frame for zero flexible

motion of Body j, then it is necessary to determine the time-dependent trans-

formation matrix AINJ relating etN to ej for Body j in its perturbed

position:
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eJ N = AJNJ 
-c - -B 'a

where in general AJiN is a

When Body j undergoes

from the ej orientation to
-ca

function of the qj (Q=1,2,...,n.).

flexural motion, the axis frame ejN rotates
-its final orientation as shown in Figure 8.2

its final orientation as shown in Figure 8.2.

eJN!3

IJN
-2

ei- ejj
2

Figure 8.2. Instantaneous Orientation
e of the ejN Axis Frame

1 -ar

To a linear approximation, this rotation of the ej N frame is expressed

by specifying three small rotations about an axis set e] parallel to the

ej set but located at node N . Calling these rotations JN , it follows

that

jN
a

OJN q
ak k1
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where jNk is the 3x nj matrix whose kth column contains the three modal

rotation components at node N of Body j for its kth mode.

Since the iN are small rotations, it follows that
a

ejN = AjNj
-a ma

where

AJNJaB

e-
a

1 ,jN JIjN
1 2 

*jN
I-3

1 *jN11 

jN _ jN
2 1

or more simply:

JNJ = + jN
A0B a=B + aB

where 6 a is the unit 'tensor

Now let us locate the nt

it ej c n , at node N. The fi
-ba

ej N by a constant input trans:
-mr

or identity matrix.

th control

rame ejcn
-a

formation

element reference frame, call

is related to the body-fixed frame

AjcnjN .
aB

ejcn = jcnjN jN
-a am eB

where

AjcnjN = (Gj3cn) (Gicn) (Gicn)
a$ 3 )my 2 yO 1 a'

The (G pCn) are formed from three user supplied Euler rotations ejcn

follows:
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1 0 0

O cos 0 lcn

O -sin 01

j cn
cos -2 0

0 1

sin 8jcn 0
2

J cnsin 1J

cos 0Jcn
1 

-sin j
c n

2

0

COs

cos jcn sin s jcn
3 3

·sin ej
c n

3

0

ejcn
2 

0

0CO Jcncos - 33

0

Finally then, the nth control element reference

to the Body j reference axis frame ei through

formation matrix Ajcnj
. aB

frame eJcn is related
-oa

the time-dependent trans-

ej cn = Ajcnj ei
-a . a -0

where

A cnj = AjcnjN AJNJ

It should be noted that if Body j is rigid, then AjNj = 6 so

that jcnj = AjcnjN , a constant matrix.a
that Aaa aB , a constant matrix.
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(Gjcn)

(Gi cn)

G2 cn

(GiCf)n 
3 c*a

(8-4)

(8-5)

(8-6)

(8-7)



In addition to calculating the orientation matrix

Interface calculates the inertial angular velocity wj

of the ejc
n

frame, where
-a

AjCnj , the Sensor

= j3 cn ejcn= 8 

-jcn = j + JNJ

with 5JNj

ej frame.

being the angular

In particular,

velocity of the ej e
n

frame relative to the
-a

5jNj
= 4iN ej

.jN = jN q*i
a A k 

Thus,

Wjcn = Ajcn{ji + JN}
a aa 8 a

8.2 Generalized Force Interface

If the nth control element (located at node N) for Body j is a

thruster, then the output of the Control Routine is the instantaneous value

of the thrust vector components in the nth control element reference frame,

pjnt = Fint ej c n

a -a

If the nth control element is a torquer (CMG), then the output of

the Control Routine is the instantaneous value of the torque vector com-

ponents in the nth control element reference frame,

Tjng Ting ejcn
a -a

If the nth control element is a gimbal hinge torquer, the output

of the Control Routine is the instantaneous value of the motor torque

components about the hinge axes,

94

where

(8-8)

(8-9)

(8-10)

(8-11)



If Body j is a rigid body, then the output of the Generalized Force

Interface is the total force and moment about the mass center

-ajC Ajnj(T) Fjnt (8-12)

n

TiC = Aj cn j (T) Tjing + rjcn Ajcnj(T) Fjnt} (8-13)
n 

where rj cn = rjcn ej is the input position vector of the nth control

element on Body j with respect to its mass center.

If Body j is a flexible body, then the Generalized Force Interface

must calculate the required generalized forces. Let us first assume that

the nth control element is a thruster at node N .

The virtual work done by the thruster force dfjtn acting on the

arbitrary mass element dm3 of Body j due to the virtual displacement

-i + 6uj + j x (r + u)

is

6 WjnT nf df 6uj + 60J x (ri + uJ)]SW f di 16 K + SU + (8-14)

B

where

SR = R i er

9. a -ct

- = 6oj e j
a -a

But, for a thruster mounted at node N ,

dfjtn = pjtn 5 (r _ r
j
N) d Vj
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= thrust vector from the nth thruster on Body j located

at node N (in ejcn frame)
-a

= position vector of node N relative to the Body j

hinge (in ei frame)

= arbitrary volume element of Body j

= position vector to an arbitrary point within dVj

relative to the Body j hinge (in eJ frame)

= Dirac delta function having the property that

B f(a) 6 (a - a) dV
j

= f(ao)

B

= F tn .[SRi er + 6qj JNg ej + 6e ejg x (riN + uiN)]

= RjnT SRi + QJnT SqJ
a a k k

+ Q JnT aej
+a.. at

so that

RjnT = ijnt . er
a -a

QnT = pjnt . ej N
k -a ka

a jnT = Fjnt e x (r
N

+ uN)]
a =

where RnT QknT Q nT a are the thruster generalized forces associated
a k a 

with the generalized coordinates R q and e respectively.a k a
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rjN

dVi

rj

6(a- a )

Thus

SWj nT

or

6W jnT (8-15)



RjnT
a1

or

Rj nT
a

= FJfnt J cn er

= A:r Ajcnj(T) Fjnt
ay y$ a

a Fjnt ejcn

3 N Ajcnj(T)
ka caB

e3 JN

Fjnt
8

Fjt ejn jg

j= eg *(r + u
= -e (r) N + u:

- Gi(T) /ujN + ':
= -G ct My uc

x (rJN
y

+ ujN )_eJ 

yN) e- x F
n t eJ cn

' -Y 8 -8'

N } Ajcnj (T)
yr

Fjnt
B

But, transforming from hinge axis to Body j axes,

j nT

VjnT

-1
= [Gj(T)] 8= (G la

Q jnT

B

= rN + ujN \ Ajcnj(T). FJnt
= Mcy eay A a 
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Thus,

Likewise,

so that

(8-16)

QJnT

QJkn T

Finally,

Q jnT

(8-17)

so that

(8-18)



Let us now assume that the nth control element is a torquer (CMG)

at node N . In order to calculate the generalized forces due to an instan-

taneous torque TjGn produced by this torque generator, one introduces

two fictitious nodes N+ and N located at the terminus of the vectors

1/2 E and - 1/2 c respectively from node N . At node N+ a force Fjn+

is introduced and at node N- a force Fjn- is introduced such that:

(see Figure 8.3).

1) Fjn- = _ pjn+

2) TjGn = 1/2 C x Fjn+ + (- 1/2 c) x jn-

1/2 C x (Fjn+ _ -in-)

1

\I 1- 1-

I N- N N

Figure 8.3. _

Figure 8.3.

__ AN

I I
I~~~I+

I

Introduction of Fictitious Nodes

In this case,

6wing = (FjN+ + FJN-) . 6R ea -a

N j %iuN+ ej + FjN- 6qj OjN- j

+ JN+-. 6 j ejg x (rjN+ + uJN+)a -a

+ piN 68e eJ g x (ri N-
a -a + uj N -
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= RinG aR
i

+ QJnG qja a k 6qk + Q ijnG SO 
a aO

RjnG
cr

-= jN+ . N+ e j

ka -a

= 0 (since PJN+ + PjN-

+ FjN- "iN- ei
ka -a

= ijN+ . ejg
-a

x (ijN+ + + N+) + pjN-. ejg
-a

qjnG
k

Let us first examine

JN+
k

qJnG
k = jN+ .[iN

ijN-
k

+

- N + kjN= ~kk

= Vk
+ 5JN

k

(JN xi E)] +

jN .1 x (FjN+
k . 12 

= OjN
k

pj N-)]

Tjng

Therefore

jnG
k

Now let us examine

= OeN(T) Ajnj (T) TJnG
ka mela

Q JnG
a~n
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or

6WjnG

so that

QinG
k

(8-19)

Q jnG
a

, 0) (8-20)

x (r i + uj N-)+ u )

1x -
2

1 -
x (- 2 6)

FJN- [fjN + jN 
k

(8-21)

(- 2 



= FN+ . ejg
-a

+ FJN . ejg
-a

+ FJN- . ejg
-a

x

x (ujN

(-jN(r + + JN- , ejg
-a

+ qji jN
2. X

+ q j
k 2.

1 2

x (- }i)2l}

2-a 2 £ X

+ ejg . (qj j x C)
-a k 2

jg (q TjN-ea 2. (q 
1-

x 2)

= eJg
-a

Tjng + -a * (qj jN
-a I k x s) x -jN+

Retaining only the lowest order term,

Q jnG
a

= ejg
-a

Tjng

iJ(T) AJcnj(T) Tjng
Y

so that

ojnGa
_ Ajcnj(T)

aB

Finally then, the total control generalized forces acting on the flexible

Body j are:

R j
C
a

QjC

RJnT
a

(QjnT

®jC
a

+ QJnG)
k

( jnT + j)nG)
51e

(8-23)

(8-24)

(8-25)
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Q jnG
51

x (-jNx Cr

or

1-
2

q jnG
a

x FjiN-

(8-22)

x {u j

TJng

= E
n

= E
n

_ pjN-)I

X pjN+



IX. Mass Properties Subroutine

The UFSS Program requires that the flexible deformation characteristics

of the terminal bodies in the spacecraft model be expressed in terms of

three-dimensional orthogonal functions. The standard source of these

orthogonal functions is a Structural Dynamics Program (SDP) wherein each

designated flexible body is modeled in the traditional structural dynamics

sense as a lumped parameter system. The basic requirements placed on the

structural dynamic model for a given flexible body are as follows:

1. The structural dynamics model for each simulated flexible body

must basically consist of point masses only, with no significant

lumped inertias admissible (no large lumped inertias are admissible

because of the manner in which certain mass integrals over the

flexible bodies are presently calculated). It is felt that this

restriction is not a serious one particularly in view of the

significant increase in calculations and cost necessary to allow

for large lumped inertias in the structural dynamics model.

2. All three components of the lumped mass at a given node must be

identical.

3. If sensors and/or thrusters are mounted on a simulated flexible

body, then a node point (joint) must be positioned at each sensor

and/or thruster location and modal rotations must be available

at these node points.

The UFSS Program is designed so that choice of a structures program

is completely arbitrary so long as a basic data set is obtainable. In

particular, the SDP provides the following data set for each flexible body:

1. Model Description

1.1 joint coordinates (rj)

1.2 joint mass values
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2. Orthonormal Mode Specification

2.1 eigenvalues associated with each mode

2.2 Joint deflections and rotations for each mode (0 i and e )

It is important to note that no development work was intended on the

SDP. Depending on the particular choice of a structures program, it is

only necessary to appropriately reformat the output to agree with the format

of the Structures Tape as given in the UFSSP Users Manual.

The Mass Properties Routine utilizes the modal and structural dynamics

model data described above to produce the special mass property quantities

required by the UFSSP for each flexible body of the spacecraft model. In

particular, the following quantities are calculated:

mi = X. dm

j

mJ B

aj = 1i f

mj B3

BJ

m;
Bj

B m

B

nj = Mass of Body j

ri dmi

jiiZ

3

==l
6=1

_ =- jid, e

dmi

rj x -j

X j
k 2

big ei (Q=1,2,3 ...nj)

dmi

dmi

3

8=1

3

Z=18=1

2.S - o

ZkB e (k,=1,2,3...nj)Bkaeaj

-j -j j
$ ' adm (k,Z=l,2,3. . .nj) = 6k/m

rj fJ dmj =Z1

3

B=1

3

a=l

(Z=1,2,3,...nj)
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(9-1)

(9-2)

(9-3)

(9-4)

(9-5)

(9-6)

(9-7)



m 1mn f
~j k -#~ ec ej
ki -J dmJ = L L kc -t e -8

c01 0B=1

(k,Z=1,2,3,. . .nj)

1
N ij

m

3

=-1artl

f r P · dmi (Z=1,2,3,...ni)

B

f
Bi

-(r * 4jj) - -rJ jj d- j(r dxI

3

L za -a -8 j
8-1

j = D where N = 6 -
ZaB 9 ao 9..c*8

kQ mJ J k z k I

3 3

--a e (k,Q=1,2,3,.. .n j)

a=1 a-1

where Ek.., = Mt daB- Ckta$

=Jf = -

Bj

3 3

E E aB --a 1 = I=li Z=1
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(9-8)

(9-9)

(9-10)

(9-11)

(9-12)

(rj · J) - rJ rj dmj



where I is the standard inertia tensor for Body j with respect to the

et frame with origin at the Body j hinge.

In several of the above equations,

3 3

6 = E 6 e
j

« = Kron"cker delta tensor (9-13)

cLal Sal

1 0 0

6 d 0 1 0

0 0 1

Finally, the generalized stiffness matrix for Body j is computed

as follows:

Ki = 1 :k _ W) 2 (9-14)

so that KZ is a diagonal matrix whose Ith diagonal element is the square

of the Zth eigenvalue for Body j divided by the mass of Body J.

The integrations indicated in Equations (9-1) through (9-12) are

replaced by a summation over the nodes (joints) of each flexible body when

the indicated quantities are calculated.
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X. Definition of Quantities

The following tables define the quantities used in the UFSS Program.

"Body (F,R)" specifies if the quantity is used for a flexible or a rigid

body; "Comp" specifies the program area in which the quantity is computed

and "Used" specifies those program areas where the quantity is used -

according to the following code:

1. Orbit Subroutine

2. Disturbance Subroutine

3. Control Subroutine

4. Auxiliary Calculations

5. Sequencing Algorithm

6. Rigid Combining Algorithm

The units are mass (M), length (L), time (T)

equal to MLT- 2

7.

8.

9.

10.

11.

Flexible Combining Algorithm

State Vector

Mass Properties Subroutine

Input

Initial Conditions

and the derived unit force (F)
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Appendix A. Derivation of the Basic Dynamic Equations

This appendix contains the derivation of the basic dynamic equations

for the UFSS Program. The first section gives details of the derivation

of the governing equations for a single flexible body. Section A.2 docu-

ments the derivation of the Flexible Combining Algorithm, while Section A.3

documents the derivation of the Rigid Combining Algorithm.

A.1. Equations of Motion for a Single Flexible Body

Since only terminal bodies of the spacecraft model are assumed to be

flexible, the equations for an arbitrary flexible body (Body j) are

derived explicitly considering its limb (Body i). Specifically, referring

to Figure A.1 the instantaneous position vector a to an arbitrary mass

element dmj in Body j is as follows:

j = r + i + i + j + u

is the inertial position

and u are as given in

vector

Figure

to a reference axis frame, Ri

2.3.

Inertial ,
Frame /

I

Figure A.1. Position Vector Definition for Body j
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where R

-ij , j9 , r

(A-1)



The first time derivative of a' is

d j) = r i + (r x Ri) + ij + ( iT((a ) R +R + x R)+ +xi)

(A -2)

+ (' x rJ) + uJ + (bJ x uj )

-r -i -jwhere W , w and w are the angular velocity vectors of the reference

axis frame (er), the Body i fixed frame (e ) and the Body j fixed frame
a -a

(eJ), respectively. (The ej frame is assumed to define the undeformed

position of Body J.)

The Kinetic energy of Body j, Tj , is formed as follows:

= 1 f d -j d m j
TJ = i d (a J ) . d ( a) dm

Therefore, substituting Equation (A-1) into (A-2) and performing the necessary

integrations over Body j, the Kinetic energy becomes:

i = mJ ll[Jr + R1

[R + Ri + (r
nj

+ 2 1: -j
k=l 

+ 1 J 
2

q

*k
ii.
ki

-j

-J

-r i ij -i+ x R) + + (+ (

x R ) + jil + (W x 9 i

nj

+ 2 qk
k=l

kJ + 2

k,Q=l

; E + q

k qk
k, L-l

( J x

*k *
n

1 jqJ
k,Q=l

· 

IJ J
j -j

x i
i j

)].

+ 2 (Wj x dJ)

Ekl. W

where
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mJ f dmj = mass of Body j = scalar

r dmi -di e vector

m
j

B=

3
d i = 1 f dm = 8 -8

1 f J dm e. = vectort

M B= 1

k A4ik-

3
Zj -1 f X J dmj = Z -

1f k =1

iJ - mj

_ 1y f[ *) . 4 dm scalar

= f [ssr . r ) - ri ri] dm

vector

Ii e- e = second order tensor
ct8 -ar - -

3

a,3=1

Nk j .J [B1 (
mJ Bj

3

a ,B=l
NJ ei ei
ka8 -a -8

_ 1 = m J BEkR mi B1

3

= C
a, B=1

~) i- J] di j

= second order tensor

*i ) - c d ]dmi

EiL. Oej ei
-kta - -$ = second order tensor

117



3

0 1
6 a=

[Note: the dyad or

ri rn , ri nk

following identity

Tj :

(A x B). (C x

d6a e- e_ = second order unit tensor

B=ea
= Kronecker delta

r "leaning product" formed from two vectors (such as

) yields a second order tensor. In particular, the

has been used in determining the above expression for

D) = (C . A) (D . B) - (C -

= C [6(B

B) (D A)

D)-- B D]

where

A, B, C and D are vectors.1

The strain energy of Body j is defined to be

U m q j q2
2 kl Kqk
k,j-l

= the generalized stiffness matrix

]the generalized coordinates qk

the dissipation function for Body j

13i

k,iLl

of Body j associated with

and

is defined to be

'4 V -
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where

ik

Likewise,



Vik = the generalized damping matrix of Body

generalized velocities qk and q .

Now taking as generalized coordinates for Body

j associated with the

j the three components

of R , tb

coordinages

follows:

d [aT -

dt DO

dt -aki
w a_ 

where a 

he pj gimbal angles 8 (y=l,...,pj) and the

qk (k=l,...,nj), the Lagrange Equations for

aTJ

Y

aTj

aRi

a

nj
Body

deformation

j are as

+ au + = Z k (k=l. j)
aUj Dj (=l .... ;)
aqk 

+ .
3Y j YJ l

Y Y

4+ DU + aDJ = k (a=1,2,3)

a a

% J and 60 are the generalized forces (environmental distur-
Y ac

bances, control forces, etc...) associated with the generalized coordinates

j j i
qk ' 0e and RY , respectively.

A.l.l Equation for qkk

Performing the indicated partial differentiation, the equation for

becomes
K

mk [Rr
(-r i r i -r -r i+ R + 2(cr x R

i
) + (w x Ri) + (x x (w x R)

+ i + 2( i x i j )

-i -i+ h x (B x

_ (Wi . zi qk _kk -j

j ) ]

2 W

- j * = . -j *w E1(, c, q

+ (i x ij)

. + MkQ q, + w

KQ j -k2.. . N

+ q +% ta 4
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j
4,_

kk

vj i q a J
kk Z .ki



(Note in the above equation and in the following, repeated subscripts are

summed over their allowable range; e.g.,

Ki ijK Z q K q)
9= 1

Rearranging and writing the above in component form we have

,j e T .j· "r Jr "i + r .R i
m t[AS RS + A R + Aj (2 + R 

-r Ri + ji .i-i ij Ri ij
y R6 aa ay 6 ao ay

O A,1 ij + +1 + Yj wj 
ka a6 6 Q 6B ka a k 

+ Vi qQ | -

Vk9 . J NlbJ ~ _ ~aB + 
q

q

where: Hka qJ Zi

Hka = Zq ta

Hi5 =qi EJ

Rearranging once more,

j A Q Q ka, a - A j 1 1 ii + VJk AiJr R
x . ka a -Oka a6 68 8 ka aR a

+ $1 s1 + l Aji SJ 2

ka a + ka AJ Sa 

+ e re: 

where:

-2 2 i - Si10 + Kk qi- 2 jq j - k +

Aje R
ka a8 R8
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Si A (2 r Ri + + Ra 0a O8 B8P 8

+ Aji -i ~i Qj
+ a WdP 4 

sj2. = ij + 2 i ij
a = a maB B

j4 j 1
Sks Ykg Hk.

klO= (N 
a

+ 5 wJ i
Nk Ha a 

Now, introducing the following relationships between , and the

gimbal angle derivatives,

i A1 wi + Gj 3J + AjJo G1O 6io
B6 Ba La By " 686 6Y Y (A-5)

.1 ji .1 G + Jj A w + 0
= Aa wa y B

where

j5 j Aji i + + S3
B 8y ya BYY B

and

Si3 Fg iio 6Jo + (Alt~ i AOi (T) - j AjJo) G
O
] 6io

= BY ya y y6 BY YP PC J

+ AJlo 0' o -Jo
BY ya a

the equation for qk becomes:

mi Mk + iG + Sj4 Gi + S 4 Ali *i
Q Q ka aLy y ka aB a

i Aji ij +i + Rjr i SJ4 Sj5
kaI ad 68 B ka aB a ka a

+ (Di j7 j2 1 Jll +
ka a ka j ba ko 

+ V q ;J i - ml (a A3a R
i kR k ka aB B
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= Si + AJB S 2
a a$ a

Finally, the equation for qk can be

[B A l l

k1
BA12 A13 BA14
ky k& kB

y.j
y

written in matrix form as follows:

= Ck

(A-6)

= ml IM

= mj Sj 4 Gj
ka ay

BA13 = m Sj4 Aji
Bk ka aB

ka aB

= - mi I Sk Si

-m *a A- ~ij6Bka G6Z48

+ 0i SJ7
ka a

- 2 2 j

+ iQi qi

- SJ10
-k

Qkek

It should be noted in the above equation that

- 1- , $1 A e

(Rr)3 k 
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where

Sj7
a

where

All
BkQ

A12
Bky

BA14
k8

Al
Ck

+ vi J 

QJe = 2 k R )
a



that is, the gravitational force acting on Body j if Body j were located

at the origin of the reference frame has been removed from the external

generalized force term by equating it to the. corresponding acceleration

term to produce the following orbital equation-

_Yim A r )mj Aje Rjr = (A-7)

or

r Y r
R R(Rr)3 R

which is solved in the Orbit Subroutine (See Appendix B).

je
Thus, Qk represents all external generalized forces associated

jwith qk except the gravity force which would act if Body j had its
r

mass center positioned at the origin of the reference axis frame e

(terminus of R ).

A.1.2 Equation for Ra

Once again performing the indicated partial differentiation, the

equation for R is as follows: (note that R = R e )

j r . r ii i +r -(i i) +
im e R + R + 2(w x R) + (w

-r r R) + Li ij i Jij
+ m x (r x i +I + 2(w x ) + (w x l

i j
) +

+ xi -(i x Qij ) + ( x J) + i x (Wj x ad) + (A-8)

+ i qi + 2(wj x ) qJ + (WJ x ) q +
k k k k k k

+ X (W x ) q a
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Rearranging and writing the above in component form we have

+2 r r + [ r + r r ]R

+ Air(T)[ii
at(c6 'I + 2 wBi iii

-ij 1 i + i i ij]
6 Ws W SY W Y I a 

+ r (T) A-di + A a6 I- , d6
8 a _+ ;i , jwyS d + j (T) "Ji

6Y q + 2 WJ ' j (T)+8 24'

j 3 j+ j i3 j 3H W +H
60 a 6y yO 8

where Hi3 = qik 4. Again int

equation becomes

,j(T) *j
6L q

-[ AJP(T)
~j6 Aji
SPSA6B

mj Are "r
- JAas RB

roducing the relationships (A-5), the above

ji jAr(T) -j6 iy - m A aT Sj6 G &
ct8 86 6y y

+ Air(T) jpij ] i R
a

y2B 
~r 'r i)

+ or W o6) R)yca C6 6

-i -i ij
'yo a6 6

+ Aji (Q ij + 2 i 2 ij ]i

+ A r (T)
ct0 [ j6 si 5

B- y y
+ 8 B p

$6 Sp
sj6 +2 jP + 2 + 2

= j mj A R

or more simply

mj ajr(T) nj(T) *j
06 z 

- [A jr(T)p

- mi Air(T) SJ6 G· j
as 8d6 6y y

s Aj B
pS 68

+ Air(T) iij] *i
~9 ~ ~ * 

_- j6 sJ5
8Y Y

+ i Sp + 2 i6 H6p4 6
W06 W6P P a 6 I

mj Are Rr
-in A 
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s j 6
a

Hj 4
ax

= dj + Hi3
a a

k ka

Finally, the equation for R can be written in matrix form as follows:
a

BA32 BA33 BA34]
ay as (B J

py

= CA3
a + a$ a

mj Aj r(T) . (T)

= - mi Ajr(T) sj6 Gj
o aop py

= - m Air(T) Sj6 Aji
aa ap p 

- mi Air(T) -ij

= mi 6

= - mi A jr(T) Sj7

j J as6 +2 
p pS + 2 

_ MJ6 ' j5- S S5

WJ Hj4 + Rje

iOnce again, somewhat as in the case of the equation for qk 

Rje = 6i mJ
a (Rr)3

Are Rr
m8 a-

Ajr(T) F 1j 
a$ a~
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BA3 2

ay

BA33B
a3

BA34
a$

where

[ BA31
t OLL

where

(A-9)

CA3
a



Thus, the gravitational force acting on Body j if Body j were located at

the origin of the reference frame has been removed from the external gener-

alized force term by equating it to the corresponding acceleration term

to produce the orbital equation

_ ym
3

Are Rr _ mj Are R 
(Rr)3 ca8 R ca8 8

or

-Y r rR = R
B

(Rr)3

which is solved in the Orbit Subroutine.

In addition, the hinge force acting on Body j due to Body i (Fji =

Fji ej) has explicitly been separated from the remaining external gener-
a M
alized forces in order that it may be most conveniently utilized in the

Flexible Combining Algorithm to be described shortly.

A.1.3 Equation for eJ

The equation for 8j can likewise be obtained by performing the
Y

"appropriate" differentiation. However, in this case Tj is an implicit

function of 8j and 0J only through the appearance of Wj and various

transformation matrices occurring in the expression for Tj when written

in terms of components of the vector quantities. The required differentiation

and subsequent algebra is extremely long and a much simpler formulation

arises by considering the torque equation about the Body j hinge:

X r t + UJ x d2 dm T + (A-10)

where Tj is the total external moment on Body j about the Body j hinge and

Tii is the hinge torque acting on Body j due to Body i. The second derivative

of acj is
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2 = R + R + 2(w x R ) + (* x R
dt

-r -r + !RJ)+ -r (-r x Ri) + i + 2( x )

-i ( x ij) + ix W (i x ) (A-l)

+ (ij x ;j) + ;J x x + -j

+ 2 ( ji x u) + (W x uJ) + j x ( x u)

Substituting (A-ll) into (A-10) and performing the necessary integrations

over Body j, the torque equation becomes

J I [ J(T)+ H
j

6(T)] q + [ + HO +J HJ8 

j 6 ji Aiji + j6 r i j6 7
- Scr Aia ka W S A6 R + S2 S a

+ [ j + H + Hj ]W+ 2 HJl2(T) c +2 Hj9 i

=T + Tji _ mJ sj6 Aje *Rr

where

j6 = I zj Hji
Hkca = Zqkca Hkca

Hs8 = H 1 1 + Hjll(T)

HjB = q
j kaB

Hi9 = qj qi, Ei = J cHi

aa= k qi Ek 8 = q zka

H = q~ NI

HJ 1 2 = 4 Nj
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Introducing the relationships (A-5), the equation for 8] becomes
Y

mJ S j8 " +S
9

Gs 6 + SJ9 Ai ' i
qk + S y y A

- j6 ji ij i i + j6 AJr Ri + Sj9 S5
ao Aa ay y as 6A 8 ac a

+ S S + WJ SJ + 2 SaB aaB 6 6 ~B

= T + Ti m 6 Aje Rr
a a aa A6 6

where

Sj yj(T) + HJ S4T

S 
=

IJ + HJ + H

J
1 0

sj15 HJ9 + HJ12(T)
Sa$ aS + H +S

Finally, the equation for ej can be written in matrix form as follows:

rA21 A22 A23 A24 CA2 + Tji
~aQ ay aS a Q a a

~~~Y.~~~~~~~ ~(A-12)

wi
ms

°°i
R

s

where
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= mj SJ8
at

= mi S 9 G¥ad Cy

= mj Sj 9 Aui

(la. Ar

= my SJ6 Ajrald d8

=- Mi SJ SJ5I $ 

- mj ~S6 A1 ii -i
a dap PB

+ Sj6 Sj 7

+ Sj 9 + 2
ad dC 8 4

Here again,

( je T (
a a

Thus, the gravitational force

origin of the reference frame

yim j S6 Aje
(ir)3 aS 6A

acting on Body j

has been removed

force term by equating it to the corresponding

the orbital equation

I mi S
j

6 Ale Rr mj SJ6
(Rr)3 Sc A86 6 -a(R)

R) - TJ .

if Body j were located at the

from the external generalized

acceleration term to produce

Aje "r =
A R6 

or

"r Rr
(Rr)3 RB

which is solved in the Orbit Subroutine.

In addition, the hinge torque acting on Body j do to Body i (Tji -

Tji ej) has explicitly been separated from the remaining torques in order

that it may be most conveniently utilized in the Flexible Combining Algorithm

to be described shortly.
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A.1.4 Constrained Degrees of Freedom

The equations just presented for qJ, Ri and eJ have been derived

assuming that all three degrees of rotational freedom exist at the gimbal

hinge joining Body j and its limb, Body i. In general, there will exist

fewer than three unrestrained gimbal axes and the equations must reflect

this fact.

Since the transformation matrix Ai
B

is determined from three sequential

Euler rotations through the angles e 8, j and finally 83 (see Section 4.1),

the order in which the gimbal angle rotations are locked is important.

Thus, 83 is constrained first, 86 is constrained neKt and finally, if
3 2

necessary, 8
1

is also constrained . Thus, if a single degree of freedom

exists between Body i and Body J, it is 8J about the first gimbal axis
jg 1 ij 
e g ; if two degrees of freedom exist, they must be 0 and 8 .

In the equations (A-6) and (A-9) for qj and R
i

respectively,

constrained degrees of freedom are simply handled by replacing Gj y by

Gj+ wherever it appears in the equations, where the super + implies
ay
removal of the Xth column if 0 

In case of the equations for the 8j themselves, constraints are handled
Jby introduction of G
+

wherever G
j

Y
by introduction of G ay wherever Gay apears in addition to elimination

of the equations for the constrained variables. This latter operation is

accomplished symbolically by introduction of a super-zero notation as

follows:

[BA21 BA220 BA2 3 0 BA24
°
] j = CA2 + T i

B6 y sv o 6

.i

R
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Pore: 6, y = 1,..., pj ; a, B = 1, 2, 3; k, I = 1,...,nj ,

where nj is the number of flexible degrees of freedom of Body j and pj

is he number of relative rotational degrees of freedom of Body j. In

case p = 0 , the above equation is void and at is determined directly

by w and the input values of the OJo through equation (4-10):

oJ = Ad l + AiJJ GJO 
a AB a Ba a

A.2 Details of the Flexible Combining Algorithm

The Flexible Combining Algorithm is used only when System A in a

given combining operation is a single flexible body, call it Body j.

Referring to Figure 5.1, assume that System B has Body i as its member of

lowest level (i<j) and that System A is to be connected to System B to

yield System C.(See Sections II and III for a detailed description of the

system model and notation.) Assume also that Body Z is the lowest numbered

branch of Body i in System B and that j<1.

The equations for System A are given by (A-6),

are written below for reference

BAll BA12 BA13
ki ky kB

A210 A220 A230
62 6y 6B

BA31 BA32
at9 ay

BA14
kB

AA240
A6

BA33 BA34
aS aS

System A

1

Y =

CAl
k

_A20
C6

cA3
a

+

(A-9) and (A-12) which

0

A j
r (T) FJi

Let us now assume that the System B equations are of the form
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System B

Bll B12 B13 " i Bl
B B B e C o
mn mB mB nm

B21 B22 B23 i B2 + Li (A-14)
Ban Baa B = 2 i (A-14)an as a8 a a

BB31 BB32 BB33 i B3 Wit
an aB a_ a a

where L is the total hinge torques on Bodyji exclusive of the torquesa
imposed by its branches numbered 2 g and W is the total hinge forces

on Body i exclusive of the forces imposed by its branches numbered 2 .

B22 B23 B32 B33
Here, B B B and B are 3 x 3 matrices with the

indices a and a running from 1 to 3; C
a

and Ca are 3 x 1 matrices;
it Bil B12 B13

if 0 has r components, then B is r x r , B and B are
n mn mB mB

r x 3 , B
B 2 1

and BB3 are 3 x r while C is r x 1 . As used above,
an an m

o contains a component for every flexible and rotational degree of freedomn
of Body i's branches and sub-branches numbered greater than or equal to .

We shall now show that the combined System C equations have a form

identical to the System B equations, namely

System C

Cll C12 C13 ij Cl
B B B 6b a
ab aB aB Ca

C21 C22 C23 i C2B B B - C + L (A-15)
ab aB aB 8 a a

C31 C32 C33 l i C3 iB B B R
.ab aa a$ C

and exactly how the elements of the coefficient matrices of (A-15) are

synthesized from the coefficient matrices of (A-13) and (A-14). Having

accomplished this, it will be obvious that the same synthesizing procedure can be

used to combine an additional flexible body to Body i since the new System B composed

of the original System B of Figure 5.1,plus Body j is governed by the Eqs.(A-15)

which are identical in form to those of the original System B as given by (A-14).
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The required equations governing the motion of the combined System C

are as follows:

A) equations of motion for Body i translations

B) equations of motion for Body i rotations

C) equations of motion for Body j along those gimbal axes where
it possesses a degree of freedom with respect to Body i

D) equations of motion for the branches and sub-branches of Body i

E) equations of motion for the flexible coordinates of Body j

Let us first consider the equations for Body i translations. The

hinge force relation for Body i is given by

wit = jij + Fij

But, from Newton's Third Law

Fij = _ Fji

Therefore, using (A-13) to eliminate the forces of interaction we have

ji Ajr - CA3 + A31 J +B BA3 3

-i i2w i i A i
so that, since W = W e , W - W e and

while Fji = Ji(T) ej'- Fji(T Aji -ei
a -a a aB e8

it .J J i(T)Ajr A3 A31 j
wi W+ AaaT . Ar [_I Ca3 + Ba q2

A33 i + A34 i ] 
Bp p 8 P P 

wi +

=

Fij -

A34 R"i
8p P

Fij(T) e
a -a

+ BA32 iJ
+ y Y

Thus, utilizing the last equation set of (A-14)

B31 "it B32 i B33 i = CB3 + ir A3
B 0 + B B 3 2C ++Ai CA
an n a a a a a a5 8

BA31 qJ BA3 2 j _ A33 i A34 
-o q Y Y 8P wp B PpO p
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or finally

B31 i + Air A31
B n + A Bctn n B

q ir A32
qk + Aa BY

Aair A33 I i
ad ao ' I+ BB33

aa
+ BA34 aa B Cra

+ Air A3 +
aB 8

wij

Thus, the following elements of (A-15) are now determined:

BC31
ab

BC32
aB

C33Ba

CC3

a

= BB31
L an

Air A31
A Bt Ia8B 82..

ir BA32 ]
A By I

= BB32 Air BA33S + OA B
ac aa aa

BB33 Air BA34
acB aCa aB

= CB3
a

+ Air f A3
a8 8

where, necessarily:

'ij
b

*iQ
n

Y
..

(A-22)

with

a, 8 = 1,2,3

b = 1,2,...,(r + nj + pj)

and the column matrix e containing only the degree-of-freedom components at

the hinge interconnection of Bodies i and j.
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+ ao

= CB 3

a

*j
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The equations of motion for the branches of Body i are exactly those
ii

given by the equations for i in (A-14):

Bll "it B12 .i B13 'i B1B e + B w +B R Cmn n m8 0 mO 8 m

The equations of motion for the flexible coordinates of Body j are

exactly those given by the equations for qJ in (A-13):

All j + A12 j + BA13 + BA14 "i AA1l
BkZ qt ky Y Bk Bko R Ck

The equations of motion for Body j along those axes where it

a degree of freedom with respect to Body i are exactly those given

equations for e in (A-13):
Y

possesses

by the

A21 BA2 2A J + BA2 3 °
Bt qz + yB S B66R R 6y y¥ 6B6

·i BA2 4
°

"i cA20

L + Bs R = Ca 68 6

Therefore, the following elements of (A-15) are now also determined:

Cll
ab
ab

BC12
aS

BBll
mn

0

All
kk0

0

0

BA12
ky

A210 BA220

6 6Y

BB12
mB

BA13

SA23
BA23

BC13
aS

B13
B 8mS

A14
BkS

A24"
B6
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cCl
a

CBl
m

Al
k

cA20 + T.i °

Finally, consider the equations for Body i rotations.

torque relation for Body i is given by

= LijLi + Tij + lij x Fij

But, as before

Fij = - Pji

and similarly

TiJ = _ Tji

Thus, from (A-13):

+ A31 ij
+R k 

A3 2 j + A3 3 i + A34 i
+ B ay 0y + .ap p ap R

and from (A-12 ): [note that all three rotational
required here to eliminate the

equations for Body j are
interacting torques]

=- Aij -CA2
Aa I- 

A21 q + BA2 2 P A23 i A24 i
+ B8 , qB ay Bp +p +B P + PBa a By P P~ P 

Therefore,

LiQ
ca

= L
ca

- A ij cA2

- Qij Air -

+ gA21 q.

C B + Baq

BA2 2 j A23 ;i + A2 4 ji
By ¥ Ba p Ip fRp'

qj + BA32 ,J +
s y Y

BA33 i
ap p

A34 *i+ Bp R
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Thus, using (A-14), the equations governing Body i rotations are:

BB21 "it
B n
an n

B22 .i BB23 "i B2
+ aB aB R a

+ Aji(T) cA2
aB C a

A21 j
- B Y A22 - BA2 3 -i A24 Ri 

By y Be P - P R

+ Qa ir A3A
ciao aBi 8 ·

A31 'j BA3 2 _ BA3 3 .i A34 ji 

- aBB q~ BY ¥Y -p BO P

or, more simply:

+ Qa q;
+ 02 *j + 93 Ji. 4 "i

'aY y y 8 a8a 8 , 

Aji(T) A2 1 j+ ir A3 1
= A( BA + I A Ba

- Aji(T) BA2 2 + ij Air BA 32
aB By a OB ay

= BB 2 2 + Aji(T)
a aa

BA23
aB

+ ii j Air BA33
aa oap pB

= BB23 + Aji(T) BA 2 4

aB aa a 
+ jij Air BA3 4

aa ap pO

= cB2 + AJi(T) CA2 + ;ij Air CA3
ta r a aB C B c a AcB 

the remaining elements of (A-15) are now determined:

= [BB2-
L an

3
= q

I I 2

1 -a qIay

BC2 3

aB
4

= Qaaa

5
= Q a
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a

B21 -it
an n

= Q5 + Lij
a la

where:

(A-26)

1
at

2
ay

Q3
aB

4
ao

Thus,

BC21
ab

BC22
aB

cC2

a



Having now demonstrated that, given the System B equations in the

form (A-14) , the combined System C equations are indeed in the similar

form (A-15), it remains to prove that the System B equations do indeed have

the form of (A-14). There are two cases to consider: first, System B is

a single rigid body and; second, System B is an arbitrarily interconnected

system of rigid and flexible bodies with Body i being rigid.

Considering the first case, one simply has an initialization of the

System B equations. Here, the appropriate equations are the familiar

Newton-Euler Equations:

R + +2 xR xR w x w x R

m -Ir -i-r i :r i -r i-r im R + R + 2 X x R + x i + ( 

(A-27)

-II w + w x Ti

i 
where m and I are respectively the mass and centroidal inertia tensor

(dyadic) for Body i while F- and T are respectively the total external

force and centroidal moment acting on Body i.

Resolving the above equations into component form and eliminating

the orbital equation from the force equation, the Body i (System B equations)

become:

i Air i + "i + ir ~ r r i
m Aao R + 2+ m8¥Y WY R

(A-28)

= Fi e + Wi j * Fi j

Ii + I T + L j + Tia + IQ F i
06 16 a a 8a

where Fie is the total external force acting on Body i exclusive of all
a

hinge forces and the gravitational force Body i would experience if it
-r iewere located at the terminus of R , while T is the total external

centroidal moment acting on Body i exclusive of all. hinge-produced moments.
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Thus, in this first case

of the coefficient matrices of

the System B specification [i.e., specification

(A-14 )] is as follows:

B22 iB I1
a0 a

BB33 = m Air

B23 A33
B B = 

a = aS

Ba
All the remaining sub-matrices of B are void since e has zero

n
components (m,n=o).

In addition,

B2 = i i + ie
C W IB W + Ta1 ao ay S a

CB 3 = mi Air 2r R +

while CB 1l
m

~r ~r
+ way WY6)

is void.

Considering now the second possible case; that is that System B is

an arbitrarily interconnected system of rigid and flexible bodies with

Body i being rigid, it is sufficient to demonstrate a second combining

algorithm which synthesizes the equations for two arbitrary systems of

interconnected bodies when System A is not a single flexible body. This

algorithm will henceforth be denoted as the "Rigid Combining Algorithm",

and its output will now be shown to have the required form of (A-15).

A.3 Details of the Rigid Combining Algorithm

Consider the combining of two systems (Systems A and B) to form a

third system (System C) as shown in Figure 3.3. Here, Body j of level

(N+l) is the lowest leveled body of System A and Body s is the lowest

numbered branch of Body j. Body i of level N is the lowest leveled body
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of System B and Body k is the lowest numbered branch of Body i. Since

the highest numbered branches of a given limb are connected first by the

Sequencing Algorithm specification, it is necessarily true that J< .

Here, System B is with no loss of generality identical to the

System B of Figure (A-2), hence its equations must be identical to those

given by (k-14), namely

BBll
mn

B12 B13mOB Bmg my

BB21 BB22 BB23
an acB ad

BB3 1
an

BB32 B33
aB BcB cxB

System B

Ieni CBl
m

cB2

a

cB3
a

+

0

Lii

Wi

In addition, System A must have a similar description and interpretation

System A

_ e-
Up9s

All
Bk

A21
BA31

A31

A12 BA13
ki kg

BA22 BA23
as aS

A32 BA33
aB B'cxB cx'B

A22 A23
Here, BA , B A

a$ ' aO '
are 3 x 1; if 0js has
A13 BA2 1
kB are ^M x 3, Bai
again, 80 contains at

CAl
Ck

CA2
cx

BA32 A33
B and B are

M components, .then

and BA3 1and A are 3 x !

+

O

Li 
acx

wi^Wa

3 x 3 matrices; CA2

BkA is M x M, B

k whileM while Ck
1
is Mx 1.

component for every flexible and rotational

degree of freedom of Body j's branches and sub-branches numbered greater

than or equal to s.
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We will now show that the combined System C equations have the form

of (A-15) as desired. Specifically, the required equations governing the

motion of the combined System C are as follows:

A) equations of motion for Body i translations

B) equations of motion for Body i rotations

C) equations of motion for the branches and sub-branches of Body i

D) equations of motion for Body j along those gimbal axes where it
possesses a degree of freedom with respect to Body i

E) equations of motion for the branches and sub-branches of Body j

Before deriving the above equations, certain relationships must be

established. Since Body j is a rigid body it is true by definition that

Ri = ii + ij - iji

Thus, taking a first time derivative,

C rx-j tK + w x + + w rrx =i + lij ij ji -_ x j i

or

= i + r (-i - i _ j(R -Ji i _ £J x -Ji

In component form (and substituting for

relationship for R in terms of R

Ri * iR + Air(T) iJ _ AJr(T) ji
a a a$ 8 -o 8

+Air(T) Xi r ir(T) 
t

iJ

_ ArT way - w Amay yi

R - i ) one obtains the recursive

(A-31)
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Taking a second time derivative in vector form:

IRi -r
= R + 6

Ii l Xr R-i
x R + A x (Ri - RJ) -r (Ri+ W x (R

+ r x I[r

-i ij

_- x j
- W x P

(-ix (R

-i

- R]

x (
i

x (-j

+ Mij +-i+ it +W

x ij )

x iit j

- j x ji

x VJi)

or, in component form:

jjj - ..i 10
= Ri + pl

a a aB
B + p19 p J + p16
" + a 8 a

where

= - Air(T) Qij
ay zy

Ajr(T) Qji
acy yS

_ Air(T) Iij

- Ajr(T) -ki
0 r --

+ +
4- W +B

+ 2-i a j

86 6

Wr r i

aiy y8 8

+ ;i- ^i Qijt

+ i -i ji

s6 6~ry y I
+ 2 a 

Let us first consider the equations for Body i translations.

hinge force relation for Body i is once again given by

wiP

The

a jii + Pij

=- jiso that, using the relation F

Wit
a

= wiJ
a

, one has

_ Aji(T) Fji
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+ -r *R

j

+ m x ~ - j)

x ij

x jix X.

p10
aB

p19
aB

p1 6

a

(A-32)

-'i
+ W
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But, since Body s is the lowest numbered branch of Body i,it follows that

WJ S 5 Fji

a a

so that

Wit = W _ Ai (T) W s (A-33)
a a aa 

Thus, using (A-29) and (A-30),

Ai(T)BA31 -is + CA

Substituting for ~ and Rj one finds (noting that here P

BB31 "iQtB BB32 Bi BB33 "i B3 = 
an n a a a a a

AjT) BA31 3 s A32 + AJi *i BA 3+ 17]

B B + B w + B R - C =

A33 [ i P10 "i + 9 (Ai + G17 16] cA3B
6

n P
6

AP
6

J +G 1GJ -
aB6 y a Sy W a a cr d Y

or

B31 i + Aji(T) A31 -s Aii(T) (B A323 19 j+ -B e + A B A P8
an n a8 82. a. a$ 86 y B6 6p py y

+ [BB32 + Ai(T) BA32 Aj + BA3 3 p + BA33 19 AGi )i
L$ as 6Y YB 6y YB 6Y Yp Po 8

BB3 3 ji(T) Wi + CB3 Aji(T) BA3 2s17
Ma as 68 a a a$ [6 6

or
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BB3 1
an

,i2, + Aji(T)
n aa

+ p12 Aji i

+ Ai(T) CA3
ao CSa

+ BB33
+ ct

A31 js 12+t
BYGj+ + B B3 2ay y 

+ Ai(T) BA3 3 j Ri
+ 6 6B R

= CB 3

Ca

+ Aji(T) BA3 3 plO
+ 6Y yS

p12 17
-P Pa8 8

- BS P6 

where

p12
a6

= Aji(T) BA3 2

aa 86
+ BA33 p19 1

aY Y6

Finally then,the following elements of (A-15) are determined:

C31 B31
B
ab ca

= BB3 2 + Aji(T)
ca as

= BB3 3 + Aji(T)
aB a6

= CB 3

a

BA3 3 p10 p12 ji
6y YB + 6 A 6B

BA33
B6

- p12 p17 + Aj i(T) CA3

aB B ccB~~~

-BA33 16 
86 6

The equations for the branches and sub-branches

those given by the equations for Pj in (A-29):

of Body i are exactly

BBll *i B12 'i B13 i CB1
B n + mB + mB R mn n mO mO a m

The equations for the branches and sub-branches

from those for aJs in (A-30):

All -js
BS a

Substituting for j
a

of Body j are determined

+ A12 j BA13 ji = Al
kO + Bk R k

and RJ
a

one finds
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(A-34)

ji (T)
aB

BA31
BR

Gj+]p12

I cS

C32Ba

BC33
aB

CC3
a

(A-35)

II



_. A js A12 i +i j + 17
B k + B A w 8+
ki + kB A8' 6 + y y B

+ BA R 10 ' i + P1
9

AJi + Gi
k6 +6 y y ¥ya a ya

BkQZ Q'Bk 6js
+ p1 J + p4 + A13 "i 13

+ + k + B R Pky y ke k8 B k

where

ky BkB Bk6 6 y

PkB = A12 A13 P1 9 Aji + BA 3+ Bka a6 68 k6

13 cAl A12
P = C- B
k k ka

+ BA13 P19 1 17 _ A13
k6 6P B k6

equations of motion

a degree of freedom

for uA in (A-30):
8

BA21 j + BA2 2 *j
at z 4 a

for Body j along those

with respect to Body i

+ BA2 3
+B RB 8a$ aB

gimbal axes where it

are obtained from the

CB2 + Lj s
a a

= Tj i
a aji Fji+ X 8 

and as above

= Wjsa

+ zj wi
la8 a

= Tji
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or

+ pl7
a Y

+ P6 =6
CAl
Ck

(A-36)

10
P6 B

The

possesses

equations

16
6

But,

L js
a

so that

Fji
8

(A-37)



Substituting from (A-3 0 ):

B + B 
A 2

+ B R - C

ji + ji BA31 js + BA32 ji + i -A33 j

aTa a aQWI Qt BB B a 33

BA21

BA23
+ ~

i j + BA22 ji BA32 

-ji BA3 3 i = Ti ji A3 + cA2

aa aB 8 a aa o a

Substituting for m and Ri , one obtains"J

-ji BA31i)" + B A22
Iaa a r a

j a 
A 3 2

i A3ii i
- kjB B Ai w

aa aa ay Y

By y Y B6 a6 ap p6 6 6y y

+ P (A + Gj+ i + p7 + P16 j
a ya a y 6 a

-_ ji CA3 + CA2
aa a r a

Rearranging,

p2 9js + P ay0 + PB + p aR II ay y a8 a a

where:

p2

p3
ary

= I BA2 1 ji BA 3 1

a20 GjP+0

20 BA2 2 A2 3 1 9 - -ji A3 2 + BA3 3 i91

aB aB a6 60 aa af + p pa
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or

cB31
a )

3BA21

(A-38)



P~a p20 A + p21

21 A23P B3
a6 a6

a Oat

P14 = - P20 PIa l O

-_ Ji BA3 3

ap p 6

17

a
-p 2 1 p16 + CA2

as a a
-_ i CA3 + TiIl

ca a a

Where the super

i.e., the Xth

and (A-38), the

BCll
Pq

BC12

PB

C13

PB

zero indicates retention of only the rows for which ej A 0 ;
Y

row is eliminated if el E 0 . Thus, using (A-35), (A-36)

following elements of (A-15) are also determined:

BBll 0 0

_ BAll
Bkp

0 P2
at

B12
Bi

P4
kB

5
Oa

mBB1

Al3Bk

1
ky

p 3

ay

; cCl
p

CB 1

m

p13
k

P1 4

a
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Finally, consider the equations for Body i rotations. Once again,

L

But,

Tii
Therefore,

= _i; + TiJ + Q-ij x i

= - TJi and Fil = - Fji

LiQ
L = ij A 

T- ji - Qi j x FJi

and using the relationships

Pji = js

TJi = EJs _ *Ji x jii

LiQ
L = LiJ - + -ji x ~Js - ii J x Ois

Substituting from (A-29) and (A-30),

B21 i + BB22 .i B23 "i
an n BS +B R

AJi(T) A2 1 jS + BA2 2 +
oro oZ 2 aB

acra P Pt Ps

+ J Aiji(T) BA3 1 - s + BA3 2

oaa ap pQ Q. pB

- CB2 = Lij

A23 *-j
B RaB 8

- CA2 I
a 

j + BA33 Rj
JB P B R P cA

3

31 + BA3 3 _ cA3 I

8 P8 8 

or,
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one has

(A-39)



BB2 1 *iQ + p18 BA3 1 + AJi(T) BA2 1 } s
an n ap pQ up p Qk

pl8 BA3 2 + Aji(T) BA22 + BB22 i + BA33 + (T) BA 3

B P Aap PB a B ap pB Ap BP

+ BB2 3 Ri Lij + cB2 + p
1 8

cA3 + Aji(T) CA
2

aa B a a ap p ac a

where

p8 = -ij ji(T) _ Aji(T) ji
aS cay yB ay y3

Substituting now for J and R- one has

B21 + p7 js i + P
1 8 A32 + Aji(T) BA22 { ji iB e +P e PP B +A B Aw

an n at Q ap pB ap p Bay y

+ GJ+ Gi + 17+ B2 +P B18 + Aji(T) BA2 3 t jji
ay y + \ aB 8 Iap pa ap Pa B

+ 10 *i P19 Ji i + GJ+ + + p1 + + B R
ay y y \ yda a ya a Py YB R

ij c+ B2 + p18 cA3 + Aji(T) cA2
a a ap p ad a

where

= 18 BA3 1 + Aji(T) BA21
aQ , aop p Q ap pQ

Simplifying the above,

BB2, 0i. + p7 ;js + p8 . ++ |Pll A. -P 9 p 1
an n aQ 2 ay y ay YB ay -YB

B22 Ii B23 9 B2 9 16
+Ba+ IBaB - P Ra = Ca + P a P8 (A-40)

11l p17 Aji(T) CA2 + p18 A3 + Lij

where B B B 

where
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8 11 pl
ay aB GY

p9 = 18 BA3 3 Aji(T) BA2 3

ay aB BY aa By

ll1 p18 BA3 2 + Aji(T) BA2 2 _ p9 p19
aB a ay y ayB ay YB

Thus, the final elements of (A-15) are now determined:

BC21 [BB 2 1 P7 P

aq an ac j ay

C22 9 p 10 + ll Aji + B22B P P + l Aji + B
aB ay yB ay yS aB

C23 BB23 9
B B P

C2 B2 9 6 11 17 ji(T) 18 A3
C = +P P P P + A + P 

a a aB B aS B aB aB B

It has now been demonstrated that given the two arbitrary systems

A and B of Figure C.3 with equations of the form (A-29) and (A-30), the

equations of the combined System C are indeed of the form (A-15) which allows

the combined system to be used as either a System A or a System B in a

subsequent combining operation. Finally, if System A or System B consist

of a single rigid body, the initialization procedure is identical to that

given by (A-28 ) and the relations immediately following these equations.
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Derivation of Environmental Disturbances

B.1 Derivation of Gravity Nominal Forces and Torques

For a spacecraft in a Kepler orbit, the magnitude of the gravitational

force at any point varies inversely as the square of the distance to the orbited

body's center. Referring to Figure 2.3, one finds that the instantaneous

force acting on a differential mass element of the terminal flexible body

is given by

d Fj = _- j dmi
(pi)3

where y is the orbited body's gravitational constant,

-i = _r + Ri
j R f i

Ri = + Eij + + j ,

and

(B-l)

(B-2)

(B-3)

(pj) = (_j . -j)l/2

In order to determine (pj) one first calculates p p as

p pJ (Rr)2 + 2 r . R + (R )2
f

so that

-j -j
p *p - (Rr)2 [1

1 1

(Pi)3 (Rr)3

Kr . Ri
f

+2

(Rr) 2

Rr/ 2J
f

Rr

L r . j 2/- /
R f Rjff'] "\R)

1+2 + r
(Rr)2 Rr
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and

(B-4)
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A nominal value of (Rj / Rr) is 10- 7 so that (Ri / Rr)2 is small

compared to the first two terms in (B-4) and can be neglected. Expanding

the resulting expression in a binominal series and retaining only first

order terms yields

(pj)3 (Rr)3 3 (Rr)
2

Substituting (B-5) into (B-1), one obtains the following expression for the

differential force acting on dmj :

d j = - Y
(Rr)3

[r . Rr dj
1 - 3 R (r + j) dmj

(Rr)2 f

Substituting the prope expression for Rf from (B-l) one has

(Rr) 2

Ri + +iJ + rj + u) dmj

Expanding the above expression,

-r
= -_ yR

(Rr)3
dmi

r_ .3
(Rr)3

(Ri + PiJ + ri + -j) dmj

+ 3 [r (Ri + ij +
(Rr) 5 L

ri + u)] (r + + i + ) dmjr 4- r u~~~~~~

Neglecting flexible displacements compared to the dimensions of the spacecraft

and neglecting terms of order higher than (R )- 3 , one obtains the final

differential gravity force to be used in subsequent calculations:

-rY yR Y

(Rr)3 (Rr)3
(Ri + Qij + J + uj) d m j

[Rr (Ri + iJ + rj + uJ dmj
(R (r)5
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(B-5)

d Fj

(B-6)

d FJ

dFj =

(B-7)

(RY [1-
(Rr)3L



If Body j is rigid, then uj = 0 and the total gravity force is

Fj ¥ mJ "j -~~ rPJ= _ Ym R + pjG

(Rr)3

where the first term is the force Body j would experience if it were located

at the terminous of Rr ; this term is combined with the proper acceleration

term from the dynamics equation for Body j and solved in the Orbital Sub-

routine as described previously in Section IV. Thus,

jG = d j
BJ

= - y mj Rj

(R r)3

3 y mj

(r) 3(R)
(R . Ri) R

But,

Rr = Rr ar (see Orbit Subroutine)

Therefore

pjG = _ y m

= - Y m
j

(Rr)3

(Rr)3

[ Ajc R

+ 3 ¥ mj

(Rr)3

(ar · Ri) ar

- 3 A AJ ar Rj(T)Are

The gravity torque on the rigid Body j can be expressed as

TjG = j x d FJ

where C is the position vector of an arbitrary mass point in Body j.
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or

F j G

ar )] (B-8)

(B-9)



Substituting the gravitational force in the form

d = - (r + J + j) dm
(Rr)3

+ 3 y

(Rr)5
[r. (EJ + J)] Rr dmi

into Equation (119),

-jG = 3 y

(Rr)5

TjG = 3 y

(Rr)5

f (Zj x Rr) (Rr · ij) dmi

B

J. (Rr ,i
j
) j dmi x

Subtracting zero from the above equation,

TjG = 3 y 

(R ) B

3 y

(Rr) BI

,i (ij Rr) dmj x 

Cj2 Rr dmj x R

or, with I = the unit dyadic,

-jG = 3 y

(R
r
) 5

Kr x J

BJ

gj Cj } r dm j

-rf
R 

BiJ

3 y

(R )5
{I (&j .) -_ C ,J dmj} . r

3 y r -x I r

(Rr)5

where I is the centroidal inertia dyadic of Body j.
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Finally,

(T)
TjG t je -r je(T) j je r
a (Rr)3 3 $6 Sy ya Gp p

I is the Body j inertia matrix with components expressed in

axes with origin at the center of mass.

B.2 Derivation of Gravity Generalized Forces

If Body j is a flexible body, then the general expression for the

force on an element of mass, dmi , is

_ Kr i _ . -(i + lij + j - j ) d

(Rr)3 (Rr)3

3 Y {ar . (Ri + ij +rj a dm

(Rr)3

Therefore, the

displacement

virtual work done by dFj acting on dmj due to the virtual

i + j + 6 j x (ri + uJ)

is

wJg = dFj '[6Ri + + ui

BJ

+ 68 X i + ui)]

i r= R e
ca -ct

= 60i Ojg
a -a

also,
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where

Body j

(B-10)

d FJ

(B-l1)

where

(B-12)



SWjg 5 Rjg 6Ri + Qg 6tq
a ac k k

so that

Rig
a

Qg

I

B

Q Oa

d FJ erer-a

d Fj · ej +j
-a ka

/ d F

B

where R
j g

Q and QO Jg are the

with the generalized coordinates Ra

' {eji
-a

x (rJ + j ) }

e gravity generalized forces associated

j
kk

and 8O
a

respectively.

Thus,

y j-r r i
R e -(R
a (Rr)3

+ R3 {ar
(Rr) 3

r r e

(Rr)3 Aa

(R + -iJ + dj

r 
R

Rj

(Rr)3 a

+ Hj3 )}ar er
-a

Aj r(T) H3
aa aHi3 }

+ m Are
(Rr ) 3 aB

r
aB

{(R (T) Are + Hj 3 (T)
a ap a

Finally, subtracting off the orbital term as described in Appendix C,

= - Y m
(R )

{Rj + Ajr(T)
a aS

+ 3m Are
(R r)3 as

ar {(R (T)
a

Are + Hj 3 (T)
aop a
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Ri g
a

= _- m

(Rr)3

+ Qij + aJ + Hj3)
r
e
--a

or

Rjg
a

AJe) ar }
C P 

RiG
a

Hi 3 }
a

Aje) rA )a}VP p

(B-13)

+ Qg a 60aa a



Consider now Qq :

j Rr
- m(Rr)3 -C ka - r3 j (Ri + + qi J l) -j

(R) B

(Ra) A

or

(Rr) 3 Ae

(R )3 J 

arr3 k
R (R )3

J dmj _ 3 .* j
J 

d m j q
j

k j(Rr)
3

k
+

r

+ 3i r - r j)

(Rr) (Rr)3 -
Bi

rj 4k dmj ' ar
k

+ 3 y -r 

(Rr)3 ·1-i -~~i

kj J d. mJ ar qJ
k X 

where j = Ri + Qij

Defining the following quantities:

Bk = 1 
k ml JB

B1

-i -;r k

j =1 

B

DJ - 1 f
B

rj
k

r

-i crB -ia e
* ddmi = C ej ej
29. k2a8 -ct -B

kk dmi = scalar,
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Qg
k

Qk

dmi



one has

Qig - lY m J Aie Rr _ Y {I Ai r j

k ~(Rr )3 aB B3 (Rr)3 ak B

+ D +ML qQ- 3 Va Ale ar (ar(T) Are(T)j
- 3 ka AaB aBa~c38 o O p p

- 3 b1 Aje r - 3
k c aa JCk t

where

bL = ar(T) Aje(T) Bi
ky d C6 W y

cj ar(T) Aje(T) Ckj Ale ar
c 9 = a .,P a

Finally, subtracting off the orbital term as described in Appendix C:

Q9
G =

m -¥ mJ AaB nj + D + qJ- 3 ckD q:k (Rr)3 kc a k 3 c 

- 3 Ja Ae ar (a r(T) ne ) - 3 bj Aje ar}
Consider a op p kg :

Consider now Q ig

Q i g - eg - f{(jr + uj ) x d FJ}

= GI(T) e 
ct -8 J. {(r( + uj) x d FJ}
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+ u) x d FJ} _- m j 6
(Rr)3

x (R
r
+ nJ) + 3

7 m
j

(S 6 x ar)(ar . n)
(Rr)3

+ 3 y
(Rr)3

f [(ri + qJ
B

Using the relation (a x b>) (c d)

becomes

x a [(r + qj ' ar]dmj
k. -J L k k -J

= - b x (a c · d), the last term above

J [ rj + j
B2

-ji + i + jg44qJ+ qj 4 
k I I z~~~~~~~~9

-i qj J]dmj . ar
~ k~ ~kJ

3- mj r
(Rr)3 a(Rr3

3 m j

(Rr)3

x r{ + Bi qJ + Bj (T) qif + k k I. 9.q

- a I a +

cQ ).e _

ar x b q + ar j a x SJi3 qi}
k k - k k - 9. 9

where: mi I f is the Body j inertia dyadic about its hinge

11
k Bik · ar = Bk AJe

k 
a r ej

C 

j 13 = qj j12 ; g12
9 k k ' k;.

Finally then,

ri j g

a

since (Jg =

- --¥ m e j- R)3 ei
(Rt)

= (GJi(T 1 Q® j g

(.Sj6 x Rr)

+ 3 -i
(Rr)3 -

-3 m ei
(Rr)3 -

(§j 6 x ar) (ar

r
a x {- Ijf

.n)

ar + (bj + jll 13) qj}
-k k k k
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But,

(r3 yra
(R)3 -

= CkZ
ara

ei

(Rr)3 -a
-x ;i)



or

Gijg - m Aje r Y j 6 Air j
S A- S36 ABS n~

ac ~ (Rrr3 a$ 66 6 (Rr)3 a $86 6

(r) 3 (Rr )

+ mG 516 Aje r rj(T) re r

w+ e3 Ay a Are

(Rr)

Thus, subtracting off the orbital term as described in Appendix C:

®1aG are r Aje(T) if Ale ai
a (Rr)3 a 8y y6 6 crAp p

- i 56 Ar I j6 Ale ar ((T) Are ar) (B-15)

(R)3 aa 8 6 c8 86 6 a ap p

ae r Aje(T) (bT) ll(T) a3(T)) A c

G= 3ilAJe arr (T) A(T) BA r

kQ 6 6a k a

S 13= qj Sj12

(r3A
j

- 3Aa sr k(T) Ae(T) 

kS8 6 6+H

Za -k ,
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B.3 Derivation of Aerodynamic and Solar Pressure Produced Generalized Forces

This analysis will be restricted to consideration of only a flat

plate configuration. Thus, utilizing Equation (3) of Section 6.2, the

general expression for the force on an element of area dAj is given by

dFj f = Pflcos nJl{Hjf cos n eJf + j f 6 f dAj

Therefore, the virtual work done by

dAj due to the virtual displacement

Si + 6Ui

dF f acting on an arbitrary element

+ asi x (ri + u j )

is

SWj f = f

-i
where 6R

d~jf * [SRi + 6uj + 6Sj x (ri + ui)]

i r
= 6R e

a -a

= S6j eiga -a

Wj f = Rj F 6Ri +
a a

so that

Rj F

a I
QjF 

A

QjF 6qJ + Q(jF

dFjf er
-aC

dFJf ' ej k
-a ka

161

(B-16)

Suj

Also,

j
a



dFi * {ejgdF - {e a
-cx

x (ri + ui ) }

iF-iF
where R

~
J , Qj' and

with the generalized coc

Q ( JF are the generalized pressure forces associated
ca

ordinates a q and e respectively.Jkq an
Thus,

= pflcos nJl{Hj f cos nj ej f ea + Gj
-C-

6f * er } A
j-ca

= Aj pf cos j IAJr ( T ) {Hjf

+ Gj

cos ni Bi
a

f6
8

e
j f = Bi ei

- -

_6f 
f

fe8-- 6 a

In particular then,

Rj A

ca = pV2 Aj Icos n AJI (){2(1- oJ) cos nJa$ cs

+ oJ [- Aje b ]} I
6

and with

cos n j

cos nlj

= ejf

= Bj(T) Aje
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Q O j F
cX

Rj F

so that

Rj F

where

(B-17)

8B 

then

br)
8



Therefore,

RjA
a = - pV2 Ai AJr(T){2 (1 - aJ)

c=B
B; (BJ (T)

+ ai Ae br} IBj(T) Ae brl .
6 6 d ap p

Also,

= ps Aj
lcos njl Ai (T) {2vj cos nf Bi

a

+ (1 - vi) Ale06

Aje e
Y SY , so

BJ(T)
a

that with

Ae Se
aa 0

= A A Air(T){2
a6 {2v

{Se}e = {68} (the unit sun vector),

. Finally then,

B (Bj (T) AJe Se
aY Y)

+ (1 - vi ) Ae S } IBj ( T )61a0 a

Now looking at Qk '

cos rj eif + Gjf 6f)dAj

Since we are working with a flat plate, the following approximation is used:

I 0i
ka

Jk dA
j

ka
= Ai A Jk

ka

RjS
a

e
6

a6where

cos n j

Rj s

a

Aje sel
ap p

QkFk

(B-19)

'j ei
ka a

so that

dAj
Ai
Mi

I
ka

dmi

IJ
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Aje br) (B-18)

Pficos njl I { H
J f



= AJ k Pf Icos nilei
ka a~~~~c

* {Hj f cos nJ ej f + Gj f 6f }

=- pv2 Aji k {2(1 - ai) Bko a~~~

+ ai A br} IB(T)
(B-20)

Aje bri
ap p

= pS Aij j {2v j BJ (Bi(
T )

+ (1-v) Ale S} IBa(T)

Aje Se

AJe Se 
op p

Now calculating

Q © jF =kva

(ri + u j ) dAJ cos nj ei f

+ Gj f f}

so that letting

a(j

r°j

= A ei g .
-a

rJ dAj (centroid of plate)

(r J + qk
k IJQ)X PfIcos nJ l{Hj

f

= Aj Pf Gj(T) { + HJ3 }{B H f cos j + 6
f J}Icos niaa ay ay y y

i~ ~ ~ ~~~
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Then,

QJF
k

and

QjAk (Bi(T)

and

Aje br)

Q S
k

Q JF

If
Ai

(B-21)

ejg
-a (ri + ui) x d j

f

= eJg /
-a 

cos nj ej f + Gif sf}

Aj

x Pflcos nJl{Hjf



But, transforming from hinge axes to Body j axes,

ijF
a = (G(T) -1 QGi F

aS

Aj Pf (rOj + H ) (Bcty y
Hj f cos ni + 6f

Y
Gif}lcos nil

®jA
/-u j = .pv2 A (r + J+ Hj3) (2(1 - ca) Ba (BI(T) Aly br )a= -pV A

j

(r +

+ ci Aje br,}BJ(T) Aje brI
0AJ 6 S a Cop p

and

= Aj (r i + H))(2v
a$ aa

Bj (Bj(T)
Aje br(-23)6Y Y ) (B-23)

+ (1 - vj) Aie S (T)

so that

jF
aa

Thus,

(tD j S
V-t" 

(B-22)

Ape br 
op p
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Appendix C. Modification of UFSSP to Simulate The Dynamics
of Rapidly Spinning Flexible Systems

The material for this appendix has been taken from Reference 2 which

contains a more complete description of the modification including test cases.

The equations contained herein are presented in their original form with the

important exception that only first order terms have been coded so that only

the first order correction terms are presented in Equation (4.4).

1.0 INTRODUCTION

The modification described herein extends the capabilities of the program to

provide for the accurate simulation of rapidly spinning flexible spacecraft,

flexible spacecraft having variable angular rates, and the structural

dynamics of helicopter rotors. In general, the modification provides the

capability of simulating the dynamics of rapidly spinning systems of bodies

or systems with variable spin in the configuration of a topological tree

having terminal flexible bodies. To use this special option of UFSSP, the

terminal flexible bodies must be representible as space curves, however,

the program will predict the general bending and torsional motion of the

body including centrifugal stiffening effects.

When a beam--a spacecraft appendage or helicopter rotor for example,

rotates about an axis perpendicular to its own axis, the resulting centri-

fugal forces have the effect of stiffening the blade to a certain degree

thereby increasing the natural frequency of bending vibration of the beam.

Traditionally, this effect has been accounted for by deriving a centrifugal

potential energy term which is added to the elastic energy of the system

or by summing the forces onportions of the beam mass. The present approach

differs in that the appropriate terms are derived from a modified displace-

ment function for the flexible body. That is, the original displacement

function for the body u is replaced by

S

- du du dr(p) dnu = u 2 - (1.1)
ue = u 2 X (dn- ) dnl ds 

where r is the position vector of a point on the flexible space curve.
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When used in the derivation of the kinetic energy, Equation (1.1),

yields the approprate terms to account for centrifugal stiffening as well as

for the effects of other components of acceleration.

In the next section, Section 2, the geometry defining the terminal

flexible space curves and their deflections is considered. In the following

section, Section 3, the modifications to UFSSP equations of motion are derived.

These results are summarized in Section 4 and the method of their incorporation

in UFSSP is outlined.

2.0 GEOMETRY ASSOCIATED WITH DEFORMED SPACE CURVES

In the present version of UFSSP, flexibility is modeled as a

summation of separable functions of displacement and time. That is, the

displacement of an arbitrary point ri in Body j at time t is given by
n

u i(r, t) 5 i i(t) Oi (rj) (2.1)

i-=l

The equations of motion as they presently exist include all terms

which arise from spin and other components of system motion on the first

order displacement, (r).- Therefore, any additional terms to be included

in the equations of motion must arise from higher order displacements

Flexural shortening is the second order displacement of Body j and therefore

logically must account for the additional terms required. This term arises

because the displacement functions, j , are defined over the entire surface

of Body j and the distance along the deformed curve to a particular point is

greater than the distance along the same path on the undeformed body.-*j i
Consequently to insure inextensibility, the deformed shape u (r , t) must be

corrected by an additional term.

The correction term which is derived here is applicable to flexible

bodies in the configuration of a spacecurve, that is, one dimensional flexible bodies.

More complex geometries, such as a closed loop or a surface, present additional

difficulties in that the net distance traversed around every closed path
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on the deflected body must be zero. This is a solvable problem whose solution

mainly depends on the resolution of indexing problems and the establishment

of suitable numerical algorithms. However, it is more complex in the

case of structures of higher dimension than for space curves.

However, restricting the modification to space curves yields results useful

to many practical problems.

Figure 2.1 shows Body j, a flexible space curve, with its

undeformed shape defined by the vector function r(s), where s is the

arc length along the undeformed body measured from the origin. The uncorrected

displaced form of the body is defined by the vector function d(s,t) measured

from the origin (a fixed point) along the deflected structure. The vectors

r and d are related as follows:

d (s) = r (s) + u (s,t) (2.2)

where u (s,t) is defined in Equation (2.1) and the superscript has been

dropped since it is unimportant to the discussion of this Section to distinguish

Body j from other bodies.

A
e3

Deflected

Undeformed

di(s+AshA

r (S) A
XN- e)

Figure 2.1. Body j, A Flexible Space Curve
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A small distance, as along the deflected Body j the position

d (s + As ) = r (s + As) + u (s + As, t)

An element of arc on the deformed curve is then given by

As

As

= d (s + As ) - d (s)

- r(s + As) - r(s) + u (s + Ast) - u (s,t)

and, in the limit

ds' =dr(s)ds =
ds

ds + du (s,t) ds
ds

The length of the arc differential ds is

ds =( d dr + 2 dr du
s+ 2ds dds d~cs ds

where it is to be-noted that

IdrlI
ds

Since
ds

-_
du
ds

ds

1

is the unit vector tangent to the space curve at s and

dr du = 0
ds ds

that is, the incremental displacement is normal to the corresponding incre-

mental length of the structure.
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Using Equations (2.8) and (2.9), Equation (2.7) becomes

s J 1 -*
ds = 1 + du

ds

The quantity du du <<1, therefore we use the approximation
ds ds

ds = (1 + ds du ) d-s /d

The differential flexural shortening is given by the following vector

(ds - ds )
dr(s)
ds du ds )ds-

_1 du
\ 2 ds

dr(s)
ds

The original displacement function for the body,

be replaced by the following function

u (s,t)

-m 1
u (s,t) = - 2

S

i0

u 

= u (st)

-* -*

du du
dnI dnT

u (s), may

+ u (s,t)

dr (n)
di

and n is a dummy arc length variable.

Substitution of Equation (2.1) into the second term of Equation (2.13)

yields

n

k=l

(2.14)

n
-m = 1
u --

i=l

'
1 di dk\ di

2 o d dI dndnFik
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du
d ds
ds

(2.10)

(2.11)

(2.12)

where

(2.13)

where

qi ( t ) qk ( t ) Fik



3.0 DERIVATION OF THE MODIFICATIONS REQUIRED TO THE UFSSP EQUATIONS OF MOTION

As stated in Equation (2.13) the displacement function for the

flexible body, u (s,t) can be corrected for flexural shortening by adding
-mj -*a term u (s,t) to u (s,t). The corrected displacement function is

uJ (s,t) = u (s,t) + umJ(s,t) (3.1)

n n

where u m(s,t) = Eq qi q ik

i=l k=l

This modified expression for uJ may now be used to modify the

expression for the position of an arbitrary mass point in Body J, p ,

and subsequently, the kinetic energy expression for Body j.

The instantaneous position vector pJ to an arbitrary point

in Body j may now be written

j = r + i ij + rJ + u (3.2)

where u + umj

The velocity vector of an arbitrary field point in the flexible

Body j is found from Equation (3.2) to be

___ Zr + i -r i ij -i ijdt R + R + i x R + + x 

+ x j+ + + x u (3.3)
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Some terms in Equation (3.3) are constant over Body j, it will

simplify the process of evaluation of the kinetic energy integral to group

these in one term. Redefine dpJ as
dt

d = jl + J J + j + -j x J
dt 

where xj l
x r i -r -i tij -i ij

Substituting the expression

Equation (3.3) we obtain

dpj dp j
dt dt

for ui , Equation (3.1), into

+ mJ + -i x mj+ u + W x u

where

dp j= -il + x + + J x udtX + 

j
the previous definition of

dt

The square of the velocity of an arbitrary point in Body j

is then

dp dp
dt dt

+ d2
+ 2 dp

dt

-*j
+ 2 dp . (J x

dt

+ 2 U
m

(J+ 2 mj (

umJ ) + um j umjU)S'mU 1 

x umJ) + (;i x U ) · (5j
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(3.4)

(3.5)

d-*1
= dp

dt

*
j

dp
dt

-mJ
u

X mj )



The last three terms in Equation (3.6) are fourth order in q , q and

will thus lead to third order terms in the equations of motion. Consequently, these

terms may be neglected from this point. Using Equation (3.6), the kinetic

energy of Body j may be written as follows:

T , 1 f dp t dm j

6, ' .

= T + 4
Bj

dt tmj
dt

+ 4a,

_*
dp . m m_ .( x um

j ) dmj
dt

Substituting the second of Equations (3.5) into Equation (3.7),

we obtain an expression for the kinetic energy which is the sum of eight

integrals:

T T* + jl* f J 1dmi + x .( i
0i

+ 

+/+ 4
j

+ 1
*i

(W -;j mj dmj +

x u* ) um dmj +

0
(W x um ) dmu*ju

x f u m i dm )

j

. *j .mj dmj

.f
ai

aj

<-

( xr) ( xu )dm
(WJ x rj ) (WJ x um j

) dmj

+

where T is the previous expression for the kinetic energy.

From Equation (3.1) we have

-m;C
u E

i,k
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(3.7)

(3.8)

qi k Fik (3.9)

( x ) ( Xm) dm
(~ X ~) ' (J X u

m j
) dmj



Consequently,

4.
-UmJ dmj

where (l)ik

This quantity may

f4.-mj dmju dmi

i,k
i k (l)ik

= - f F1F dm is a new special mass property.

also be used to define the integral

= 2 mi qj .j (ji k (l)ik

We may now evaluate the kinetic energy term by term.

tl = 2 m x*jl

i

2= mJ x~ .(WJ x

qi k (l)ik

J ql qi PjN4 i k (1)ik)

t3 = .

J

= mJ 'i ' Z

i,k

(Wj x j) ' umj dmj

i qk ik

-mi
ik

r x Fk dm
ik

The terms t4 and t5 will result in second order contributions

to the equations of motion, consequently these are neglected.

t6 f (Wi x ri) I (Wi x u
m j ) dmj

iik

m j jj q Emj-j
2 Z qik ik

ik

(3.15)
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(3.10)

(3.11)

(3.12)

(3.13)

where

(3.14)

mj2 
2<



where

and 6 is

for Body j

=m 2 f ((j -kj - kP
ENk = 2m ( (r Fk)6 - ri F) dm

the Kronecker delta.

The remaining terms t7 and t8 are second order.

The previous results may be combined to write the kinetic energy

as follows:

T = T1 + T2

where

T* -j (
E qi qk Zik)
i,k

mj2 )i k E) 

= -i k (1)ik
i,k

+ w x qi qk ()ik

The terms in T
1

are of the same form as certain

that is, in T we have the terms

terms in T

-T (W i k i ) + W . (mi a J i (3.17)
2 ii kjik/k

i~~~~~k ~~~i,k

Thus, the terms in T1 can be accounted for in the orignal equations

of motion by redefining Ek and Z as follows:
ik ik
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%ik

ik

=*j
Eik

i-*
ik

-mj+ k

ik
+ zmt

where and ik replace ik and Zik as they are originally defined

and Eim , and Zmj , are modifications that must be added to

these to correct for flexural shortening.

The terms contributed by T
2

to the equations of motion
are established-by means of Lagrange's Equations.

4.0 SUMMARY OF FORMULATION RESIULTS' AND APPROACH TO INCORPORATION IN UFSSP

4.1 Summary of the Equations of Motion

The modified equations of motion are as follows:

i
The qk Equation

dt

aTI

i
k

(2 m FJ2 AJr Rika rcy Ry - 2 mI F 2ka Ay ij Wi
kar ay ycta

+ 2 ar +y I.ka ay y c0

where fj2
ka e (l)kka
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(3.13)

+

(4.1)

aT
i

aqkkc

( IT,
TF aii~



The R
i

Equationa

dt\
aT d T _= _= d
Ri dtaI
a a

+ 5i A4ir(T)F3 +
+ I M a B

2 kj2(T)
-k

(4.2)q _ j F1 *j

where Fj 1
a

Fa3

FJ6

+ FJ5 + Aiy Ai+ 4 w F15 + W y (ip
Fjl]

= Fkaka

i
The 8B Equation

d _T \ T d / d T

dt 35iJ 38i adtX X a a

aT
1

ae

+ m
j

F
j l

(Aje Rr + Ajr Ri
Aa ay y acy y

- AJi -ij i + S 7 )ay yd a a (4.3)

The above relations will now be used to redefine the elements

of the B matrix and C matrix defined by Equations (5-35) to (5-49).

Old expressions for the sub-matrices will be designated by a superscript .

(Note: only first-order correction terms are included here.)
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All _ All
kB = Bk

A12 _ A12
Bky ky

BkB - ' Fm A M z

1k Bk
3

BA14 = BA14 + 2 mj E F2 Air

kBk - Blkr ~B ~
aXPL

cAl cAl
k~ k

- 2 m V FJ 2
SJ

7
k a 

=A21 A21*
H-a 69

A22 = A22.*
6y I. 6 y

BA2 3 A2 3=
6B 6B

BA24 BA%4*B = B68 68

A2 A2*
6 6
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, 3
BA31 BA31 + 2 m jr CT) FT)
at. a2 *T

B=1

A32 A32B B
acy ay

A33 A= B33B B
aa ad

A34 BA34
B = B

ao a8

CA
3

= CA3 (4.4)
a a

Various quantities used in Equation (4.4) are auxiliary quantities

which are calculated at each time step. These quantities are generally

expressible in terms of the special mass properties. In the following, the

calculation of the special mass properties is clarified.

4.2 New Special Mass Properties Required

The UFSS Program has been modified to include additional terms

for a terminal body which is flexible and in the configuration of a space

curve. Any space curve may be approximated by a sequence of interconnected

points, and consequently, the most logical representation of a space curve

is in terms of a series of interconnected nodal points. All of the modifi-

cations to the special mass properties are derived in terms of such a model.

However, it may be desired to model a structure having significant lateral

dimensions as shown in Figure 4.1 which requires several rows of nodes.
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Ae3

3

2

1

-

4

10 15 20 25 30 35 40

9 14 19 24 29 34 39

28 13 18 23 28 33 38

7 12 17 22 27 32 37

6 11 16 21 26 31 36

Aj
ej

1
Figure 4.1. A Flexible Body Represented by

Several Rows of Nodes

The quantities associated with 'the rows of nodes defining a structure
such as the structure of Figure 4.1 must be used to define the properties of
the system represented by a single row of nodes as shown in Figure 4.2

Ajt!3

Aj
e22 3 4 5 6 7 8

Figure 4.2. Nodal Numbering Scheme Admissable
to the Analysis
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The quantities associated with the structure of Figure 4.1 will

be designated as follows:

*j
Amg = the mass lumped at the kth node of Body j

x = the cth coordinate (ct=1,2,3) of node . in Body j

-*4
= the ath component of mode k at node .

mj = the total number of nodes (mj < 64)

These quantities are all input to the program in its origiml form, but the

user is now constrained to number the nodes as shown in Figure 4.1. These

quantities must be used to obtain equivalent properties for a space curve

as shown in Figure 4.2. One additional input is required, the number of rows

of nodes, however this can be accounted for by reinterpretation of the signi-

ficance of the input flag designating whether a body is rigid or flexible.

Thus, let f equal the number of rows of nodes, then the mass lumped at the

ith node in the space curve is given by

m~i = t Am ,

Z = f(i -1) + I ; i ,...,m

where mj = mj/fj (45)

Thus, for example, for the structure shown in Figure 4.2 we obtain

the mass at the third node from the nodal masses of the structure in Figure 4.1

as follows:

i = 3

f,= 5
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5(3)
21 m*j

Am3= E Am

k = 5 (3 - 1) + 1

15

= E Am~

L=11

The coordinates of the nodes and the components of the modes of

the representation shown in Figure 4.2 will be assumed to be those associated

with the center row of nodes in the structure of Figure 4.1. Consequently,

fj must always be an odd number. The number of the node in the representation

of Figure 4.1, node 9 , which corresponds to node i in the structure of

Figure 4.2 is found from

= 2 f i - f. + 1) (4.6)

For example, for f = 5, and i = 3 we obtain
j

= 2 (2(5)3 - 5 + 1) = 13

The modes and coordinates of at node i in the representation shown

in Figure 4.2 are found as follows:

%mik ak ( )

where =2 (2fj i - f + 1) and
2 *J

xii = x*j (4.8)

Preliminary to defining the modifications to the special mass

properties, the following quantities will be required, none of which are

output.
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Arji = j Xi-
ai ai a,i-

a = 1,2,3

i = 2,3,...mj

Arj = xl
al al

O( rLi = ( E (Arii) 1)
ca=l

and a vector is defined at each node, h , for modes k and . ,

Fji
akth

E (8 ki

Component rr
mode k

node i

(4.9)- k,k-1) ( i -
j
Qi-1)

h = 1, 2... , m.

The following quantities will be calculated. The first, FJ

is a special mass property which arises in base motion terms, while the second

and third are terms which add to the existing special mass property terms.

These additional special mass properties can be expressed in terms of

integrals which take the same form as other existing special mass property

integrals.

The special mass property FJl)kk is defined as follows:
(1)k2,

P(l)k 1
m(1)

Bj

FQ dmJ
(4.10)

This integral is replaced by a summation over the configuration of Figure 4.2,

specifically by a summation over the , nodes defined by (4.62.
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Except for the dual subscripting, the special mass property, F(l)k 

defined in (4.10) is in exactly the same form as the integral defining

in Equation (A-3),

The second special mass property to be defined, Z is a

modification to be added to an existing special mass property, ZkZ

Zmk is defined as follows:

-mj 2 j-1Zk = 2j x FxP dmj (4.11)

B.
3

This expression, except for the dual subscripting is in exactly

the same form as the expression for the existing special mass property

Yj defined in Equation (A-4).

The remaining special mass property, EkJ , is a modification

to be added to an existing special mass property, Ek EkX is

defined as follows:

Emj = 2 f ( (r F() - , )dmj (4.12)

Em

j

Bj

This expression, except for dual subscripting, is in exactly the

same form as the expression for the existing special mass property NJ de-

fined in Equation (A-7).
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Appendix D. Modification of UFSSP to Calculate Dynamic Loads

This appendix describes the methodology involved in calculating dynamic

loads within the UFSS program. Determination of these loads can be divided

into two basic phases. In the first phase, forces and moments acting at

each interconnection between adjacent bodies are calculated within the UFSS

program via information available from the original dynamics subroutines.

In the second phase, the mode-acceleration method is utilized to calculate

internal loads at any desired node point within a given terminal flexible

body. These internal loads are calculated by a separate, stand-alone

program operating upon a special loads history tape generated by the UFSS

program.

D.1 Interconnection Force and Torque Calculations

The synthesizing algorithm within UFSSP is based on elimination of the

interaction forces and torques between adjacent bodies of the system model.

By so doing, the final system of matrix differential equations includes

only the unconstrained degrees of freedom of the spacecraft model. This

retention of only the minimal number of degrees of freedom contributes

greatly to reducing the cost of the solution for the dynamic response.

However, when the dynamic loads are desired, the interaction forces and

torques must be obtained explicitly. Specifically, they are calculated

from the linear and angular velocities and accelerations and the coordinate

transformations associated with the individual bodies of the spacecraft model

by following the same sequencing algorithm used to synthesize the dynamic

equations of motion.

D.l.1 Interconnection Loads for a Flexible Body

If Body j is a flexible body (with limb Body i), its interconnection

forces and torques can readily be determined using the equations from Appendix

A. Specifically, from Equation (A-9):

j AJr I -CA3 +BA31 q +B e + B +B R (D-1)
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Similarly, from Equation (A-12):

j = CA + BA21 q BA22 Aj +A23 Bi A24 i (D-2)
a a a + ay + B + B R.a (D-2)

The coefficient matrices in the above equations are available immediately fol-

lowing the flexible load operation for Bodyj. The quantities qi and 03 are
kY

elements of the dynamic derivative vector depicted as {X} = {a} in Figure 8.1

on'!page 90; thus, they are available immediately following a call to the deriv-
.i ··i

ative subroutine of the master program. The quantities tB and R
B
are not

available for any bodies other than for Body 1; consequently, their explicit

calculation must be added to the program. From Equation (A-5):

j = Aji Wi + Gi j + 5(D-3)
B O8a a ay y (D-3)

In a similar manner, Equation (A-32) can be rewritten to produce

= R i + Li 2 Qij j2 ji + Lil jij +Air(T) (D-4)
=R + L X j tj' + L" iRJ + A(D-4)a a ay Y ay y ay y ay Y

where
LJl Ajr(T) - j r jr(T)

~~~ay aa ~ ,~y aa~ BS~y ,(D-5)
j2 al 5y ~ _ jr(T) - r Ajr(T)(Lj L31 _ w r Ly

1

+ A sky a
ay aa BY aa Sy ao ay aa Sy

Thus, xj and J are computed recursively and can be considered as an addition
a a

to the rigid auxiliary calculations.

The above calculations for Tji and Fji are performed only at those time
a a

points called out for printing and/or plotting since the computations are only

necessary for output.

D.1.2 Interconnection Loads for a Rigid Body

If Body j is a rigid body (with limb Body i),the interconnection forces

and torques at its limb connection can also be determined using the equations

from Appendix A. Specifically, from Equation (A-30) and the relationship

wjs = - i immediately preceeding Equation (A-33):

F
j
i = _ A 3 + BA3 1 -js + BA32 AJ + BA33 'R (D-6)

F a Ca a Lt , aB a aB
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Similarly, from Equations (A-30) and (A-37):

Ti ji Fji- CA2 + BA21 js + BA2 2 H + BA2 3 Ri (D-7)
a Za F- a at Q aS a Ba R

The coefficient matrices in the above equations are available immediately fol-

lowing the rigid load operation for Body j. The quantities ej s are elements of

the dynamic derivative vector, while 4 and j are as given by Equations (D-3)

and (D-4) with the single change of pj17 replacing Sj5 in (D-3).

As in the previous case of a flexible body, the above calculations for

¶ri and Fjiare performed only at those time points called out for printing

and/or plotting.

D.2 Internal Load Calculations

In the UFSS program, flexible bodies are modeled in the traditional struc-

tural dynamics sense as a system of joints (or nodes) which are interconnected

by weightless finite element members (e.g., beams, plates...). All masses are

lumped at the joints. The orthogonal functions used to describe the spatial

deformation of the bodies are normally taken to be the orthonormal modes pro-

duced by a standard structural dynamics program such as NASTRAN, SAMIS, or SMAP.

In general, most such programs are based on small deflection theory, using the

direct stiffness matrix finite element approach assuming linear stiffnesses.

Such an approach allows for the generation of a specific transformation matrix,

herein called the load transformation matrix (LTM), by a systematic application

of unit forces along each degree of freedom with all other forces set equal to

zero. In particular, such a matrix allows internal member forces to be calcu-

lated through the simple matrix multiplication operaton

LM (t) = B F (t). (D-8)
MQ Q

In the above equation, each component of PM(t) represents a specific desired

internal member load, BQ is the LTM and FQ(t) is the applied force vector.

Specifically, BHQ contains, as rows, coefficients for each degree of freedom

relating the desired load to a unit force applied successively along each degree

of freedom of the structure (assumed to be three times the number of joints in
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UFSSP since only the modal translations are used to describe deformations),

and the ordering of the columns must be identical to the degree of freedom

ordering within the mode shapes. The applied force vector, FQ(t), contains

both the externally applied forces (environmental forces, control forces...)

and the inertial (d'Alembert) forces associated with the inertial velocity and

acceleration of each joint.

Since the LTM is generated as a static problem with no relationship to

the joint masses, the following development is intended to show how the iner-

tial forces enter the calculations and exactly what model is to be used for

generating the LTM.

D.2.1 Basic Concepts

Consider an arbitrarily moving flexible body, B, modeled in the tradi-

tional structural dynamics fashion as a system of N discrete joints, each

having lumped mass m (n = 1, ..., N), with massless finite elements (beams,

plates...) connecting the joints. As shown in Figure D.1, let e (a = 1,2,3)

be unit vectors defining a right-handed, rectangular Cartesian reference frame

fixed in the undeformed body (i.e., deformations of B are measured relative to

to the e frame). Let the origin of e be denoted by 0, and let the external
-o -n

forces acting at 0 be denoted by F . Let a be the inertial acceleration of

joint n, and let F be the total external force acting on joint n. The gov-

erning equations of motion for joint n are as follows:

-n

n

4 ~/on

B -Schematic of a Flexible Body B

e

Figure -D.l - Schematic of a Flexible Body B
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K

a = + -nk(D-9)
k=l

-nk
where g is the force exerted on joint n by the'kth structural element (here,

K is the total number of structural elements and, obviously, gnk= if element k

does not connect to joint n).

Summing over the entire body B:

N K
n n -n Zn nk -o

m a = + g + F
n=l n-1 k=l

(note, if 0 is located at joint n of B, then conventionally Fn = 0, as its

contribution is expressed in F )

But,

N / K N
ink = ( E nk

n=l k=l k= n=l

and, since the elements are massless,

N
' -nk 0.

n=l
Therefore,

N N
n -n E -pn + o

.Z m an -
n=l n=l

or

N -~ n -nt
E - mn a + = 0 (D-10)
n=1

at each instant of time.

Consider the same flexible body, B, rigidly cantilevered at 0, as

shown in Figure D.2. Let fn be the constant external force applied at joint

n. Then, the static force equilibrium equations for B are as follows:

N

E ?n + =o 0.

n=l

where fo is the reaction force vector acting on B at the cantilever point 0.
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/-3 2f 22 /

0 1

Figure D.2 - System B Cantilevered at 0

If, at any instant of time t, one now sets

in = n(t) n mn an(t) (D-11)

then, necessarily,

-o = FP

and the internal loads. within the cantilevered body shown in Figure D.2 are

identical to those within the free body shown in Figure D.1 at time t.

One now generates the LTM for the system shown in Figure D.2 by success-

ively applying a unit force along each translational degree of freedom with all

other forces set equal to zero. Having obtained the LTM (B ), one determines

the desired internal loads within the system of Figure D-.1 at any time t as

being equal to those present in the system of Figure D.2 when the force distri-

bution (D-ll) is applied. Specifically, the internal loads i,(t) are determined

as

M (t) =R MFQ t), (D-12)

where F (t) is a 3N-vector, with components

f 
1

1
f

FQ(t)=

N
f 3

189



with fY being the component along the e axis of the force distribution given
Y -Y

by (D-ll).

D.2.2 Internal Loads Program

Because of the core storage required to save the LTM and the fact that

internal load calculations can be performed subsequent to the dynamic simulation

of a given system, it is advisable that a separate progam "L9ADS"' be generated

to calculate the internal loads witthna given flexible body. Figure D.3 presents

an overview of the program interfaces. As seen from Equation (D-12), only two

basic quantities are required for the loads computation. The first quantity,

BNg, is obtained from a structural dynamics program; the second quantity, FQ(t),

is obtained from the UFSS program via a special history tape.

As previously mentioned, the row index, M, of BMQ runs from one to A,

where A is the total number of internal loads to be calculated; the column

index, Q, runs from one to 3N, where N is the total number of joints in the

structural dynamics model of the given flexible body, as input to UFSSP. Addi-

tional description of the LTM is contained in the user manual for the L0AD

program referenced under "Associated Documentation" on page of this document.

Figure D.3. Basic Interfaces for Internal Load Calculations
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Thus, given Equation (D-12), it only remains to prescribe the

computation of FQ (t); considering Equation (D-ll), the problem is further

reduced to determination of fn. Let us first determine a (t).

Differentiating Equation (A-2), one finds that for Body j:

a R + R + 2 (r x Ri) + r Ri

+ r x x R + x i
i

+ X x x i)

+ Xi x(ijn+uin) , ujn + 2 x ujn + ni x [9 x(r)n+ uinj]
- n

or, specifically identifying that part of a which is joint independent.

j = A + (n +j n) + -j

+2 -j xin + x p x(jn + jn)+ 2w x u + W

where
Bj -i 2(-r Ri) +(r x Ri + xr x R

'i ij +i x i i + i + 2 x . i+ z +i + x xI

-~~~Bj -r
In the above expression for A , note the absence of the term R . As in

the case of the derivation of the basic dynamic equations in Appendix A

(see, for example, the discussion leading to Equation (A-7)...), the d'Alembert

force acting on Body j, if Body j were located at the origin of the reference

frame, has been removed from the acceleration term by equating it to the

corresponding gravitational force as reflected later in Equation (D-15).

Finally, in component form,

ajn ABj + jn + 2 A' j n
a a a a$ 8

"$Bl r (cc B -Wn~ + < n) + $ 4 + Wi-(D-13)

+ ' Irn + w n> 

9
j

(r nn)8/ 8)
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where
i n =j in

'=n j in

The external forces acting on joint n (Fin) will presently include gravita-

tional forces and control thruster forces. (Geomagnetic, solar pressure and

aerodynamic pressure forces as well as control torquers can be added at any

time if a specific application calls for their inclusion.) From Equation

(8-16), the control thruster force components at joint n are given by

FnC =A ir RnT (D-14)

r has r
From Equation (B-ll) and the fact that a has components -Aj3 in the

a3 -8
r

frame and components { 0 0 -1 } in the - frame, the gravity force components

at joint n are given 'by

TjnG ,Anr R
1

+ (t + )]

(Rr) 3) (D-15)
+3i

n { + Ar (
T

rjn +.n) AJr
+ r33 (r + a3a3

(Note absence of the term which has been equated to the term

minRr arising from ABJ as previgusly noted.)

Finally, the external force acting on joint n is given by

Fjn = FinC + FjnG (D-16)
a a

and the total applied force components making up F (t) for use in

Equation (D-12) are given by

fjn = Fjn _ mJn ain (D-17)
a a a

with F -aand a a as given by Equations (D-16) and (D-13) respectively.-a a
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